960 resultados para arsenogorceixite, gorceixite, arsenate, phosphate, crandallite, Raman spectroscopy
Resumo:
The molecular spectroscopy (including near infrared diffuse reflection spectroscopy, Raman spectroscopy and infrared spectroscopy) with OPUS/Ident software was applied to clustering ginsengs according to species and processing methods. The results demonstrate that molecular spectroscopic analysis could provide a rapid, nondestructive and reliable method for identification of Chinese traditional medicine. It's found that the result of Raman spectroscopic analysis was the best one among these three methods. Comparing with traditional methods, which are laborious and time consuming, the molecular spectroscopic analysis is more effective.
Resumo:
Here, we describe a new method to study the biointeraction between Escherichia coli and mannose by using supramolecular assemblies composed of polydiacetylene supported on the self-assembled monolayer of octadecanethiol on a gold electrode. These prepared bilayer materials simply are an excellent protosystem to study a range of important sensor-related issues. The experimental results from UV-vis spectroscopy, resonance Raman spectroscopy, and electrochemistry confirm that the specific interactions between E. coli and mannose can cause conformational changes of the polydiacetylene backbone rather than simple nonspecific adsorption. Moreover, the direct electrochemical detection by polydiacetylene supramolecular assemblies not only opens a new path for the use of these membranes in the area of biosensor development but also offers new possibilities for diagnostic applications and screening for binding ligands.
Resumo:
The solid-solid phase transition of [n-C11H23NH3]2ZnCl4 Complex have been studied by Raman spectroscopy. The results show that the occurence of the structural phase transitions mainly related to the change of packing structure and molecular conformation o
Resumo:
The C-H stretching, C-H bending, C-C stretching and the low-frequency vibration regions have been investigated by Raman spectroscopy for [n-CnH2n+1NH3]2 ZnCl4 with n=7 approximately 12, 16. It is found that their frequency and relative intensities are related to the length of carbon chain in the molecules and present the odd-even effect to carbon atom numbers in chain. Some changes in spectra are interpreted in terms of the different molecular packing and interaction of chain.
Resumo:
The C-H stretching, C-H bending, C-C stretching and the low-frequency vibrational regions have been investigated by Raman spectroscopy for [n-CnH2n+1NH3]2ZnCl4 with n = 7-12, 16. The frequencies and relative intensities are related to the length of the carbon chain in the molecules and present the odd-even effect of the carbon atom numbers in the chains. Some changes in the spectra are interpreted in terms of the different molecular packing.
Resumo:
The low-frequency Raman spectrum of n-decylammonium chloride was measured as a function of temperature in the temperature range from 290 to 340K, and the longitudinal acoustical mode vibration band was assigned. The results showed that there are two phase transitions at 313K and 321K, respectively. The phase transition at 313K is mainly induced by change of hydrocarbon chain conformations, while that at 321K is mainly induced by change of order degree of molecular packing. The results suggest low-frequency Raman spectroscopy is a useful probe of structural phase transition for long-chain compounds.
Resumo:
The complexes of rare earth ions with glutathione were prepared and charactrized by IR and Raman spectroscopy in the solid state. Based on the spectral results, the structure and coordination sites of the ligand in these complexes were determined.
Resumo:
Surface-enhanced Raman scattering (SERS) of xanthopterin adsorbed on colloidal silver was measured and the Raman spectrum calculated by the density functional theory method was also obtained. Xanthopterin can be detected down to 5 X 10(-9) m and the enhancement of the scattering intensity is at least 10(5)-fold. Xanthopterin molecules are adsorbed flatly on the surface of the Ag particles. This study shows that SERS could be another prospective method for the detection of pterines. Copyright (C) 2001 John Wiley Sons, Ltd.
Resumo:
The titanium species in four kinds of titanium-containing MFI zeolites have been studied by ultraviolet (UV)-Raman and ultraviolet visible (UV-Vis) absorption spectroscopies and by the epoxidation of propylene with diluted H2O2 solution (30%). UV-Raman spectroscopy is proved to be a suitable means to estimate qualitatively the framework titanium in TS-l zeolites. Based on the comparison of the relative intensity ratio I-1125/I-380 of UV-Raman spectra, the TS-1(conv.) sample synthesized hydrothermally by the conventional procedure shows the highest amount of framework titanium. UV-Vis spectroscopy reveals that besides minor anatase. titanium species are mainly tetrahydrally coordinated into the framework for TS-l(conv.) or the Ti-ZSM-5 sample prepared by gas-solid reaction between deboronated B-ZSM-5 and TiCl4 vapor at elevated temperatures. For the TS-1(org.) and TS-1(inorg.) samples synthesized hydrothermally using tetrapropylammonium bromide (TPABr) as template and tetrabutylorthotitanite (TBOT) and TiCl3 as titanium source, respectively, the presence of mononuclear and isolated TiOx species which are proposed to bond to the zeolite extraframework is observed. In addition to the framework titanium species, these isolated TiOx species are assumed to be also active for propylene epoxidation.
Resumo:
The synthesis of zeolite X is characterized by UV Raman spectroscopy, NMR spectroscopy, and X-ray diffraction. UV Raman spectra of the liquid phase of the synthesis system indicate that AI(OH); species are incorporated into silicate species, and the polymeric silicate species are depolymerized into monomeric silicate species during the early stage of zeolite formation. An. intermediate species possessing Raman bands at 307, 503, 858 and 1020 cm(-1) is detected during the crystallization ill the solid phase transformation. The intermediate species is attributed to the beta cage, the secondary building unit of zeolite X. A model for the formation of zeolite X is proposed, which involves four-membered rings connecting to each other via six-membered ring to form beta cages, then the beta cages interconnect via double six-membered rings to form the framework of zeolite X. (C) 2001 Elsevier Science B.V. All rights reserved.