940 resultados para arginine biosynthesis
Resumo:
Systemic or intra-striatal acute administration of nitric oxide synthase (NOS) inhibitors causes catalepsy in rodents. This effect disappears after sub-chronic treatment. The aim of the present study was to investigate if this tolerance is related to changes in the expression of NOS or dopamine-2 (D(2)) receptor or to a recovery of NOS activity. Male albino Swiss mice (25-30 g) received single or sub-chronic (once a day for 4 days) i.p. injections of saline or L-nitro-arginine (L-NOARG, 40 mg/kg), a non-selective inhibitor of neuronal nitric oxide synthase (nNOS). Twenty-four hours after the last injection, the animals were killed and their brains were removed for immunohistochemistry assay to detect the presence of nNOS or for `in-situ` hybridisation study using (35)S-labeled oligonucleotide probe complementary to D(2) receptor mRNA. The results were analysed by computerised densitometry. Independent groups of animals received the same treatment, but were submitted to the catalepsy test and had their brain removed to measure nitrite and nitrate (NOx) concentrations in the striatum. Acute administration of L-NOARG caused catalepsy that disappeared after sub-chronic treatment. The levels of NOx were significantly reduced after acute L-NOARG treatment. The decrease in NOx after drug injection suffered a partial tolerance after sub-chronic treatment. The catalepsy time after acute or sub-chronic treatment with L-NOARG was negatively (r = -0.717) correlated with NOx levels. Animals that received repeated L-NOARG injections also showed an increase in the number of nNOS-positive neurons in the striatum. No change in D(2) receptor mRNA expression was found in the dorsal striatum, nucleus accumbens and substantia nigra. Together, these results suggest that tolerance to L-NOARG cataleptic effects do not depend on changes in D(2) receptors. They may depend, however, on plastic changes in nNOS neurons resulting in partial recovery of NO formation in the striatum.
Resumo:
The interaction of purinergic and nitrergic mechanisms was evaluated in the caudal nucleus tractus solitarii (cNTS) using awake animals and brainstem slices. In awake animals, ATP (1.25 nmol/50 nL) was microinjected into the cNTS before and after the microinjection of a selective neuronal nitric oxide synthase (nNOS) inhibitor N-propyl-L-arginine (NPLA, 3 pmoles/50 nL, n=8) or vehicle (saline, n=4), and cardiovascular and ventilatory parameters were recorded. In brainstem slices from a distinct group of rats, the effects of ATP on the NO concentration in the cNTS using the fluorescent dye DAF-2 DA were evaluated. For this purpose brainstem slices (150 pm) containing the cNTS were pre-incubated with ATP (500 mu M; n=8) before and during DAF-2 DA loading. Microinjection of ATP into the cNTS increases the arterial pressure (AP), respiratory frequency (f(R)) and minute ventilation (V(E)), which were significantly reduced by pretreatment with N-PLA, a selective nNOS inhibitor (AP: 39 +/- 3 vs 16 +/- 14 mm Hg; f(R): 75 +/- 14 vs 4 +/- 3 cpm; V(E): 909 159 vs 77 39 mL kg(-1) m(-1)). The effects of ATP in the cNTS were not affected by microinjection of saline. ATP significantly increased the NO fluorescence in the cNTS (62 +/- 7 vs 101 +/- 10 AU). The data show that in the cNTS: a) the NO production is increased by ATP; b) NO formation by nNOS is involved in the cardiovascular and ventilatory responses to microinjection of ATP. Taken together, these data suggest an interaction of purinergic and nitrergic mechanisms in the cNTS. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Objective: The present study has investigated the effect of blockade of nitric oxide synthesis on cardiovascular autonomic adaptations induced by aerobic physical training using different approaches: 1) double blockade with methylatropine and propranolol; 2) systolic arterial pressure (SAP) and heart rate variability (HRV) by means of spectral analysis; and 3) baroreflex sensitivity. Methods: Male Wistar rats were divided into four groups: sedentary rats (SR); sedentary rats treated with N(omega)-nitro-L-arginine methyl ester (L-NAME) for one week (SRL); rats trained for eight weeks (TR); and rats trained for eight weeks and treated with L-NAME in the last week (TRL). Results: Hypertension and tachycardia were observed in SRL group. Previous physical training attenuated the hypertension in L-NAME-treated rats. Bradycardia was seen in TR and TRL groups, although such a condition was more prominent in the latter. All trained rats had lower intrinsic heart rates. Pharmacological evaluation of cardiac autonomic tonus showed sympathetic predominance in SRL group, differently than other groups. Spectral analysis of HRV showed smaller low frequency oscillations (LF: 0.2-0.75 Hz) in SRL group compared to other groups. Rats treated with L-NAME presented greater LF oscillations in the SAP compared to non-treated rats, but oscillations were found to be smaller in TRL group. Nitric oxide synthesis inhibition with L-NAME reduced the baroreflex sensitivity in sedentary and trained animals. Conclusion: Our results showed that nitric oxide synthesis blockade impaired the cardiovascular autonomic adaptations induced by previous aerobic physical training in rats that might be, at least in part, ascribed to a decreased baroreflex sensitivity. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Introduction: Inhibition of matrix metalloproteinases (MMPs) improves the hemodynamics during acute pulmonary embolism (APE) and oxidative stress upregulates MMPs. We compared the effects of different NO-cGMP pathway activators on APE-induced increases in MMPs. Materials and Methods: Hemodynamic and biochemical evaluations were performed in non-embolized dogs treated with saline (N = 5), and in microspheres embolized dogs receiving saline (n = 9), or nitrite (6.75 mu mol/kg i.v. over 15 min followed by 0.28 mu mol/kg/min; n = 5), or sildenafil (0.25 mg/kg; n = 5), or BAY 41-2272 (0.03, 0.1, 0.3, and 1 mg/kg/h; n = 5). Plasma thiobarbituric acid reactive substances (TBARS) concentrations were determined. Zymograms of plasma samples were performed, and in vitro antioxidant effects or inhibition of MMPs by these drugs were examined. Results: APE increased mean pulmonary artery pressure by similar to 25 mmHg. Nitrite, BAY 41-2272, or sildenafil reversed this increase by similar to 40% (P < 0.05). Similar effects were seen on the pulmonary vascular resistance. While both nitrite and sildenafil produced no systemic effects, the highest dose of BAY 41-2272 produced systemic hypotension (P<0.05). While nitrite and sildenafil blunted the increases in plasma pro-MMP-9 levels and TBARS (all P < 0.05), BAY 41-2272 produced no such effects. Nitrite and sildenafll produced in vitro antioxidant effects and inhibited MMPs only at high concentrations. BAY 41-2272 produced no such effects. Conclusions: Activation of the NO-cGMP pathway with nitrite or sildenafil, but not with BAY 41-2272, attenuates APE-induced oxidative stress and increased MMP-9 levels. These findings are consistent with the idea that NO-cGMP pathway activators with antioxidant effects prevent the release of MMP-9 during APE. (c) 2008 Elsevier Ltd. All rights reserved.
Resumo:
We have investigated the ovariectomy effects on the cardiovascular autonomic adaptations induced by aerobic physical training and the role played by nitric oxide (NO). Female Wistar rats (n =70) were divided into five groups: Sedentary Sham (SS): Trained Sham (TS); Trained Hypertensive Sham treated with N(C)-nitro-L-arginine methyl ester (L-NAME) (THS): Trained Ovariectomized (TO); and Trained Hypertensive Ovariectomized treated with L-NAME (THO). Trained groups were submitted to a physical training during 10 weeks. The cardiovascular autonomic control was investigated in all groups using different approaches: 1) pharmacological evaluation of autonomic tonus with methylatropine and propranolol; 2) analysis of heart rate (HR) and systolic arterial pressure (AP) variability; 3) spontaneous baroreflex sensitivity (BRS) evaluation. Hypertension was observed in THS and THO groups. Pharmacological analysis showed that TS group had increased predominance of autonomic vagal tonus compared to SS group. HR and intrinsic HR were found to be reduced in all trained animals. TS group, compared to other groups, showed a reduction in LF oscillations (LF=0.2-0.75 Hz) of pulse interval in both absolute and normalized units as well as an increase in HF oscillations (HF=0.75-2.50 Hz) in normalized unit. FIRS analysis showed that alpha-index was different between all groups. TS group presented the greatest value, followed by the TO, SS. THO and THS groups. Ovariectomy has negative effects on cardiac autonomic modulation in trained rats, which is characterized by an increase in the sympathetic autonomic modulation. These negative effects suggest NO deficiency. In contrast, the ovariectomy seems to have no effect on AP variability. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Acute pulmonary embolism produces acute pulmonary hypertension, which can be counteracted by activating the nitric oxide-cyclic guanosine 3`,5`-monophosphate (cGMP) pathway. While previous studies have shown that sildenafil (an inhibitor of cGMP-specific phosphodiesterase type 5) or nitrite (a storage molecule for nitric oxide) produces beneficial effects during acute pulmonary embolism, no previous study has examined whether the combination of these drugs can produce additive effects. Here, we expand previous findings and examine whether sildenafil enhances the beneficial haemodynamic effects produced by a low-dose infusion of nitrite in a dog model of acute pulmonary embolism. Haemodynamic and arterial blood gas evaluations were performed in non-embolized dogs treated with saline (n = 4), and in embolized dogs (intravenous injections of microspheres) that received nitrite (6.75 mu mol/kg intravenously over 15 min. followed by 0.28 mu mol/kg/min.) and sildenafil (0.25 mg/kg over 30 min.; n = 8), or nitrite followed by saline (n = 8), or saline followed by sildenafil (n = 7), or only saline (n = 8). Plasma thiobarbituric acid-reactive substances (TBARS) concentrations were determined using a fluorometric method. Acute pulmonary embolism increased pulmonary artery pressure by similar to 24 mmHg. While the infusion of nitrite or sildenafil infusions reversed this increase by similar to 42% (both P < 0.05), the combined infusion of both drugs reversed this increase by similar to 58% (P < 0.05). Similar effects were seen on the pulmonary vascular resistance index. Nitrite or sildenafil alone produced no significant hypotension. However, the combined infusion of both drugs caused transient hypotension (P < 0.05). Both dugs, either alone or combined, blunted the increase in TBARS concentrations caused by acute pulmonary embolism (all P < 0.05). These results suggest that sildenafil improves the beneficial haemodynamic effects of nitrite during acute pulmonary embolism.
Resumo:
The sciarid DNA puff C4 BhC4-1 gene is amplified and transcribed in salivary glands at the end of the larval stage. In transgenic Drosophila, the BhC4-1 promoter drives transcription in prepupal salivary glands and in the ring gland of late embryos. A bioinformatics analysis has identified 162 sequences similar to distinct regions of the BhC4-1 proximal promoter, which are predominantly located either in 5` or 3` regions or introns in the Drosophila melanogaster genome. A significant number of the identified sequences are found in the regulatory regions of Drosophila genes that are expressed in the salivary gland. Functional assays in Drosophila reveal that the BhC4-1 proximal promoter contains both a 129 bp (-186/-58) salivary gland enhancer and a 67 bp (-253/-187) ring gland enhancer that drive tissue specific patterns of developmentally regulated gene expression, irrespective of their orientation.
Resumo:
While endogenous nitric oxide (NO) may be relevant to the beneficial hemodynamic effects produced by sildenafil during acute pulmonary embolism (APE), huge amounts of inducible NO synthase (iNOS)derived NO may contribute to lung injury. We hypothesized that iNOS inhibition with S-methylisothiourea could attenuate APE-induced increases in oxidative stress and pulmonary hypertension and, therefore, could improve the beneficial hemodynamic and antioxidant effects produced by sildenafil during APE. Hemodynamic evaluations were performed in non-embolized dogs treated with saline (n = 4), S-methylisothiourea (0.01 mg/kg followed by 0.5 mg/kg/h, n = 4), sildenafil (0.3 mg/kg, n = 4), or S-methylisothiourea followed by sildenafil (n = 4), and in dogs that received the same drugs and were embolized with silicon microspheres (n = 8 for each group). Plasma nitrite/nitrate (NOx) and thiobarbituric acid reactive substances (TBARS) concentrations were determined by Griess and a fluorometric assay, respectively. APE increased mean pulmonary arterial pressure (MPAP) and pulmonary vascular resistance index (PVRI) by 25 +/- 1.7 mm Hg and by 941 +/- 34 dyn s cm(-5) m(-2), respectively. S-methylisothiourea neither attenuated APE-induced pulmonary hypertension, nor enhanced the beneficial hemodynamic effects produced by sildenafil after APE (>50% reduction in pulmonary vascular resistance). While sildenafil produced no change in plasma NOx concentrations, S-methylisothiourea alone or combined with sildenafil blunted APE-induced increases in NOx concentrations. Both drugs, either alone or combined, produced antioxidant effects. In conclusion, although iNOS-derived NO may play a key role in APE-induced oxidative stress, our results suggest that the iNOS inhibitor S-methylisothiourea neither attenuates APE-induced pulmonary hypertension, nor enhances the beneficial hemodynamic effects produced by sildenafil. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
Objective: In this study, we determined the protective effect of isoflavones from Glycine max on human umbilical vein endothelial cell (ECV304) damage induced by hydrogen peroxide (H(2)O(2)) and on nitric oxide (NO) production. Methods: We studied the regulation of NO synthesis in cultured human endothelial cells by phytoestrogens contained in soy extracts in the presence or absence of ICI 182,780 or N(omega)-nitro-L-arginine methyl esther and determined the protective effect of these isoflavones on ECV304 damage induced by H(2)O(2). Results: We show that soy extracts activate NO synthesis in endothelial cells and protect against cell damage. Conclusions: In conclusion, soy isoflavones markedly protect ECV304 cells against H(2)O(2) damage and promote NO synthesizing. Therefore, these isoflavones call potentially act as an NO promoter and as an antioxidant.
Resumo:
Background/Aims: Renal risks of nicotine exposure associated with hypercholesterolemia are still unknown. Methods: Thus, hypercholesterolemic rats (HC) and their control (C) were evaluated by inulin clearance (InCl) measured at baseline and during nicotine infusion (100 mu g/kg b.w.). Five groups were studied: (i) C; (ii) DEN (C submitted to a renal denervation); (iii) C + L-arginine (0.25% in drinking water); (iv) HC, and (v) HC + L-arginine (0.25% in drinking water). Furthermore, C and HC had their renal blood flow (RBF) measured and they have also been chronically treated with nicotine (12.5 mu g/ml in drinking water) to assess InCl on the 8th day. Results: Nicotine increased blood pressure in C, DEN and HC and reduced InCl only in C. L-Arginine treatment blunted nicotine effects on blood pressure and increased InCl only in C. Moreover, nicotine did not change RBF in C but elicited in HC, whereas renal vascular resistance was increased in C and unchanged in HC. Indeed, chronic nicotine exposure has also reduced InCl in C. Conclusion: Nicotine acted on the adrenergic system and nitric oxide counteracted this action in C, but the same may not be applied to HC. An impairment in renal autoregulation may explain why InCl was unchanged in HC. Copyright (C) 2009 S. Karger AG, Basel
Resumo:
Deficiency of the lysosomal glucocerebrosidase (GCR) enzyme results in Gaucher`s disease, the most common inherited storage disorder. Treatment consists of enzyme replacement therapy by the administration of recombinant GCR produced in Chinese hamster ovary cells. The production of anti-GCR antibodies has already been described with placenta-derived human GCR that requires successive chromatographic procedures. Here, we report a practical and efficient method to obtain anti-GCR polyclonal antibodies against recombinant GCR produced in Escherichia coli and further purified by a single step through nickel affinity chromatography. The purified GCR was used to immunize BALB/c mice and the induction of anti-GCR antibodies was evaluated by enzyme-linked immunosorbent assay. The specificity of the antiserum was also evaluated by western blot analysis against recombinant GCR produced by COS-7 cells or against endogenous GCR of human cell lines. GCR was strongly recognized by the produced antibodies, either as cell-associated or as secreted forms. The detected molecular masses of 59-66 kDa are in accordance to the expected size for glycosylated GCR. The GCR produced in E. coli would facilitate the production of polyclonal (shown here) and monoclonal antibodies and their use in the characterization of new biosimilar recombinant GCRs coming in the near future.
Resumo:
We have identified a globally important clonal complex of Mycobacterium bovis by deletion analysis of over one thousand strains from over 30 countries. We initially show that over 99% of the strains of M. bovis, the cause of bovine tuberculosis, isolated from cattle in the Republic of Ireland and the UK are closely related and are members of a single clonal complex marked by the deletion of chromosomal region RDEu1 and we named this clonal complex European 1 (Eu1). Eu1 strains were present at less than 14% of French, Portuguese and Spanish isolates of M. bovis but are rare in other mainland European countries and Iran. However, strains of the Eu1 clonal complex were found at high frequency in former trading partners of the UK (USA, South Africa, New Zealand, Australia and Canada). The Americas, with the exception of Brazil, are dominated by the Eu1 clonal complex which was at high frequency in Argentina, Chile, Ecuador and Mexico as well as North America. Eu1 was rare or absent in the African countries surveyed except South Africa. A small sample of strains from Taiwan were non-Eu1 but, surprisingly, isolates from Korea and Kazakhstan were members of the Eu1 clonal complex. The simplest explanation for much of the current distribution of the Eu1 clonal complex is that it was spread in infected cattle, such as Herefords, from the UK to former trading partners, although there is evidence of secondary dispersion since. This is the first identification of a globally dispersed clonal complex M. bovis and indicates that much of the current global distribution of this important veterinary pathogen has resulted from relatively recent International trade in cattle. Crown Copyright (C) 2011 Published by Elsevier B.V. All rights reserved.
Resumo:
To better understand the role of nitric oxide (NO) in mammal development, specifically in the transition of the fetal stages at birth, we studied the timing of cell-specific expression of inducible NO synthase (iNOS) isoform during gestational periods of rats, mainly at the late stages of intra-uterine development. Before experimentation, the samples were collected (from 17th to 21st gestational days), fixed in 10% buffered formalin and embedded in paraffin for histological procedures. Hereafter, the sections (5 mu m thickness) obtained from different embryos were immunostained by avidin-biotin-immunoperoxidase technique, by using antibody against iNOS isoform. The most of cell immunopositive was suggestive of granulocyte-like cells and those cells were resident close to the blood vessels in different organs, such as: lung, liver or bone marrow environment. Sometimes we noted immunopositive cells in the blood flow, as reported in the thymus. In agreement, iNOS expression, obtained by western blotting analysis, showed the same profile. Together, our data shows that iNOS expression increased gradually during the late stages of rat development (from E17 to E21) and it was executed by cells close to blood vessels. Thus, we can clearly to predict that this expression was finely modulated and it contributes for time-line dependent NO production during rat late development.
Resumo:
Introduction: Cognitive and attentional deficits in schizophrenia include impairment of the sensorimotor filter as measured by prepulse inhibition (PPI). In this way, the study of animals that naturally present low PPI responses could be a useful approach for screening new antipsychotic drugs. Several pieces of evidence suggest that dopamine and nitric oxide (NO) can modulate PPI but their role in those animals is unknown. Objectives: The aim of this study was to investigate the role of dopamine and NO in Wistar rats with naturally low PPI response. Methods: Male Wistar rats with low PPI responses received an i.p. injection of the antipsychotics haloperidol (0.1, 0.3 or 1 mg/kg) or clozapine (0.5, 1.5 or 5 mg/kg), the anxiolytic diazepam (1 or 3 mg/kg) or the NO synthase (NOS) inhibitors, N(G)- nitro-L-arginine (L-NOARG; 40 mg/kg, acutely or sub-chronically) or 7-Nitroindazole (7-NI; 3, 10 or 30 mg/kg). All animals were submitted to the PPI test 1 h after injection. Striatal and cortical dopamine, DOPAC, and noradrenaline levels of rats with low PPI responses were compared to rats with normal PPI responses. Results: We found increased levels of catecholamines on the striatum and prefrontal cortex of Wistar rats with low PPI. In these animals, both antipsychotics, typical and atypical, and NOS inhibitors significantly increased PPI. Conclusion: Taken together, our findings suggest that the low PPI phenotype may be driven by an over-active catecholamine system. Additionally, our results corroborate the hypothesis of dopamine and NO interaction on PPI modulation and suggest that Wistar rats with low PPI may represent an interesting non-pharmacological model to evaluate new potential antipsychotics. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Our aim was to investigate the effect of central NOS inhibition on hypothalamic arginine vasopressin (AVP) gene expression, hormone release and on the cardiovascular response during experimental sepsis. Male Wistar rats were intracerebroventricularly injected with the non-selective NO synthase (NOS) inhibitor (L-NAME) or aminoguanidine, a selective inhibitor of the inducible isoform (iNOS). After 30 min. sepsis was induced by cecal ligation and puncture (CLP) causing an increase in heart rate (HR), as well as a reduction in median arterial pressure (MAP) and AVP expression ratio (AVP(R)), mainly in the supraoptic nucleus. AVP plasma levels (AVP(P)) increased in the early but not in the late phase of sepsis. L-NAME pretreatment increased MAP but did not change HR. It also resulted in an increase in AVP(P) at all time points, except 24 h, when it returned to basal levels. AVP(R), however remained reduced in both nuclei. Aminoguanidine pretreatment resulted in increased MAP in the early phase and higher AVP(R) in the supraoptic, but not in the paraventricular nucleus, while AVP(P) remained elevated at all time points. We suggest that increased central NO production, mainly inducible NOS-derived, reduces AVP gene expression differentially in supraoptic and paraventricular nuclei, and that this may contribute to low AVP plasma levels and hypotension in the late phase of sepsis. (c) 2010 Elsevier B.V. All rights reserved.