996 resultados para arbre de régression et de classification
Resumo:
Oxidative stress is a physiological condition that is associated with atherosclerosis. and it can be influenced by diet. Our objective was to group fifty-seven individuals with dyslipidaemia controlled by statins according to four oxidative biomarkers, and to evaluate the diet pattern and blood biochemistry differences between these groups. Blood samples were collected and the following parameters were evaluated: diet intake; plasma fatty acids; lipoprotein concentration; glucose; oxidised LDL (oxLDL); malondialdehyde (MDA): total antioxidant activity by 2,2-diphenyl-1-picrylhydrazyl (DPPH) and ferric reducing ability power assays. Individuals were separated into five groups by cluster analysis. All groups showed a difference with respect to at least one of the four oxidative stress biomarkers. The separation of individuals in the first axis was based upon their total antioxidant activity. Clusters located on the right side showed higher total antioxidant activity, higher myristic fatty acid and lower arachidonic fatty acid proportions than clusters located on the left side. A negative correlation was observed between DPPH and the peroxidability index. The second axis showed differences in oxidation status as measured by MDA and oxLDL concentrations. Clusters located on the Upper side showed higher oxidative status and lower HDL cholesterol concentration than clusters located on the lower side. There were no differences in diet among the five clusters. Therefore, fatty acid synthesis and HDL cholesterol concentration seem to exert a more significant effect on the oxidative conditions of the individuals with dyslipidaemia controlled by statins than does their food intake.
Resumo:
The Biopharmaceutics Classification System (BCS) is a tool that was created to categorize drugs into different groups according to their solubility and permeability characteristics. Through a combination of these factors and physiological parameters, it is possible to understand the absorption behavior of a drug in the gastrointestinal tract, thus contributing to cost and time reductions in drug development, as well as reducing exposure of human subjects during in vivo trials. Solubility is attained by determining the equilibrium under conditions of physiological pH, while different methods may be employed for evaluating permeability. On the other hand, the intrinsic dissolution rate (IDR), which is defined as the rate of dissolution of a pure substance under constant temperature, pH, and surface area conditions, among others, may present greater correlation to the in vivo dissolution dynamic than the solubility test. The purpose of this work is to discuss the intrinsic dissolution test as a tool for determining the solubility of drugs within the scope of the Biopharmaceutics Classification System (BCS).
Resumo:
A chemotaxonomic analysis is described of a database containing various types of compounds from the Heliantheae tribe (Asteraceae) using Self-Organizing Maps (SOM). The numbers of occurrences of 9 chemical classes in different taxa of the tribe were used as variables. The study shows that SOM applied to chemical data can contribute to differentiate genera, subtribes, and groups of subtribes (subtribe branches), as well as to tribal and subtribal classifications of Heliantheae, exhibiting a high hit percentage comparable to that of an expert performance, and in agreement with the previous tribe classification proposed by Stuessy.
Resumo:
Recently, we have built a classification model that is capable of assigning a given sesquiterpene lactone (STL) into exactly one tribe of the plant family Asteraceae from which the STL has been isolated. Although many plant species are able to biosynthesize a set of peculiar compounds, the occurrence of the same secondary metabolites in more than one tribe of Asteraceae is frequent. Building on our previous work, in this paper, we explore the possibility of assigning an STL to more than one tribe (class) simultaneously. When an object may belong to more than one class simultaneously, it is called multilabeled. In this work, we present a general overview of the techniques available to examine multilabeled data. The problem of evaluating the performance of a multilabeled classifier is discussed. Two particular multilabeled classification methods-cross-training with support vector machines (ct-SVM) and multilabeled k-nearest neighbors (M-L-kNN)were applied to the classification of the STLs into seven tribes from the plant family Asteraceae. The results are compared to a single-label classification and are analyzed from a chemotaxonomic point of view. The multilabeled approach allowed us to (1) model the reality as closely as possible, (2) improve our understanding of the relationship between the secondary metabolite profiles of different Asteraceae tribes, and (3) significantly decrease the number of plant sources to be considered for finding a certain STL. The presented classification models are useful for the targeted collection of plants with the objective of finding plant sources of natural compounds that are biologically active or possess other specific properties of interest.
Resumo:
Developing a unified classification system to replace four of the systems currently used in disability athletics (i.e., track and field) has been widely advocated. The diverse impairments to be included in a unified system require severed assessment methods, results of which cannot be meaningfully compared. Therefore, the taxonomic basis of current classification systems is invalid in a unified system. Biomechanical analysis establishes that force, a vector described in terms of magnitude and direction, is a key determinant of success in all athletic disciplines. It is posited that all impairments to be included in a unified system may be classified as either force magnitude impairments (FMI) or force control impairments (FCI). This framework would provide a valid taxonomic basis for a unified system, creating the opportunity to decrease the number of classes and enhance the viability of disability athletics.
Resumo:
Data mining is the process to identify valid, implicit, previously unknown, potentially useful and understandable information from large databases. It is an important step in the process of knowledge discovery in databases, (Olaru & Wehenkel, 1999). In a data mining process, input data can be structured, seme-structured, or unstructured. Data can be in text, categorical or numerical values. One of the important characteristics of data mining is its ability to deal data with large volume, distributed, time variant, noisy, and high dimensionality. A large number of data mining algorithms have been developed for different applications. For example, association rules mining can be useful for market basket problems, clustering algorithms can be used to discover trends in unsupervised learning problems, classification algorithms can be applied in decision-making problems, and sequential and time series mining algorithms can be used in predicting events, fault detection, and other supervised learning problems (Vapnik, 1999). Classification is among the most important tasks in the data mining, particularly for data mining applications into engineering fields. Together with regression, classification is mainly for predictive modelling. So far, there have been a number of classification algorithms in practice. According to (Sebastiani, 2002), the main classification algorithms can be categorized as: decision tree and rule based approach such as C4.5 (Quinlan, 1996); probability methods such as Bayesian classifier (Lewis, 1998); on-line methods such as Winnow (Littlestone, 1988) and CVFDT (Hulten 2001), neural networks methods (Rumelhart, Hinton & Wiliams, 1986); example-based methods such as k-nearest neighbors (Duda & Hart, 1973), and SVM (Cortes & Vapnik, 1995). Other important techniques for classification tasks include Associative Classification (Liu et al, 1998) and Ensemble Classification (Tumer, 1996).
Resumo:
The phylogenetic relationships among members of the family Comamonadaceae and several unclassified strains were studied by direct sequencing of their PCR-amplified 16S rRNA genes. Based on the 16S rRNA gene sequence analysis, members of the family formed a coherent group. The closest relatives are species of the Rubrivivax sub-group: Leptothrix discophora, Ideonella dechloratans and Rubrivivax gelatinosus. The genus Hydrogenophaga formed two subclusters, as did the species of Acidovorax, whereas the five species of the genus [Aquaspirillum] were polyphyletic. Comamonas acidovorans was phylogenetically distant from the type species of Comamonas, Comamonas terrigena. On the basis of this work and previous studies, Comamonas acidovorans is removed from the genus Comamonas and renamed as Delftia acidovorans gen. nov., comb, nov. Descriptions of the new genus Delftia and of the type species Delftia acidovorans, for which the type strain is ATCC 15668(T), are presented.
Resumo:
Strain-dependent hydraulic conductivities are uniquely defined by an environmental factor, representing applied normal and shear strains, combined with intrinsic material parameters representing mass and component deformation moduli, initial conductivities, and mass structure. The components representing mass moduli and structure are defined in terms of RQD (rock quality designation) and RMR (rock mass rating) to represent the response of a whole spectrum of rock masses, varying from highly fractured (crushed) rock to intact rock. These two empirical parameters determine the hydraulic response of a fractured medium to the induced-deformations The constitutive relations are verified against available published data and applied to study one-dimensional, strain-dependent fluid flow. Analytical results indicate that both normal and shear strains exert a significant influence on the processes of fluid flow and that the magnitude of this influence is regulated by the values of RQD and RMR.