904 resultados para aircraft assembly
Resumo:
We propose simple heuristics for the assembly line worker assignment and balancing problem. This problem typically occurs in assembly lines in sheltered work centers for the disabled. Different from the well-known simple assembly line balancing problem, the task execution times vary according to the assigned worker. We develop a constructive heuristic framework based on task and worker priority rules defining the order in which the tasks and workers should be assigned to the workstations. We present a number of such rules and compare their performance across three possible uses: as a stand-alone method, as an initial solution generator for meta-heuristics, and as a decoder for a hybrid genetic algorithm. Our results show that the heuristics are fast, they obtain good results as a stand-alone method and are efficient when used as a initial solution generator or as a solution decoder within more elaborate approaches.
Resumo:
Self-assembly of poly(4-vynil-N-alkyl)pyridinium bromide with alkyl side chains of 2, 5, 7, 10, or 16 carbons from ethanolic solutions onto flat silica surfaces was studied by means of ellipsometry, atomic force microscopy (AFM), contact angle measurements, and sum-frequency generation (SFG) vibrational spectroscopy in the CH3 and CH2 stretch region. Ab initio quantum-chemical calculations on the N-alkylpyridinium side-group with restricted Hartree-Fock (RHF) method and 6-311G (d,p) basis set were C one to estimate the charge distribution along the pyridinium ring and the alkyl side-chain. SFG results showed that longer side chains promote the disorientation of the alkyl groups at the surface, corroborating with the contact angle values. AFM images revealed film homogeneity, regardless the alkyl side group. However, after 24 h contact with water, ringlike structures appeared on the film surfaces, when the polycation alkyl side chain had 7 or less carbons, and as the alkyl chain increased to 10 or 16 carbons, the films dewetted because the hydrophobic interactions prevailed over the electrostatic interactions between the pyridinium charged groups and the negatively charged SiO2 surface. Under acid conditions (HCl 0.1 mol.L-1), the film mean thickness values decreased up to 50% of original values when the alkyl side chains were ethyl or pentyl groups due to ion-pair disruption, but for longer groups they remained unchanged. Quantum-chemical optimization and Mulliken electron population showed that (i) from C2 to C15 the positive charge at the headgroup (HG) decreased 0.025, while the charge at combined HG + alpha-CH2 increased 0.037; and (ii) for C6 or longer, the alkyl side group presents a tilt in the geometry, moving away from the plane. Such effects summed up over the whole polymer chain give support to suggest that when the side chains are longer than 7 carbons, the hydrophobic interaction decreases film stability and increases acid resistance.
Resumo:
Septins are a conserved group of GTP-binding proteins that form hetero-oligomeric complexes which assemble into filaments. These are essential for septin function, including their role in cytokinesis, cell division, exocytosis and membrane trafficking. Septin 2 (SEPT2) is a member of the septin family and has been associated with neurofibrillary tangles and other pathological features of senile plaques in Alzheimer's disease. An in silico analysis of the amino acid sequence of SEPT2 identified regions with a significant tendency to aggregate and/or form amyloid. These were all observed within the GTP-binding domain. This was consistent with the experimental identification of a structure rich in beta-sheet during temperature induced unfolding transitions observed for both the full length protein and the GTP-binding domain alone. This intermediate state is characterized by irreversible aggregation and has the ability to bind Thioflavin-T, suggesting its amyloid nature. Under electron microscopy, fibers extending for several micrometers in length could be visualized. The results shown in this study support the hypothesis that single septins, when present in excess or with unbalanced stoichiometries, may be unstable and assemble into amyloid-like structures. (C) 2011 Elsevier Masson SAS. All rights reserved.
Resumo:
Recent developments in piston engine technology have increased performance in a very significant way. Diesel turbocharged/turbo compound engines, fuelled by jet fuels, have great performances. The focal point of this thesis is the transformation of the FIAT 1900 jtd diesel common rail engine for the installation on general aviation aircrafts like the CESSNA 172. All considerations about the diesel engine are supported by the studies that have taken place in the laboratories of the II Faculty of Engineering in Forlì. This work, mostly experimental, concerns the transformation of the automotive FIAT 1900 jtd – 4 cylinders – turbocharged – diesel common rail into an aircraft engine. The design philosophy of the aluminium alloy basement of the spark ignition engine have been transferred to the diesel version while the pistons and the head of the FIAT 1900 jtd are kept in the aircraft engine. Different solutions have been examined in this work. A first V 90° cylinders version that can develop up to 300 CV and whose weight is 30 kg, without auxiliaries and turbocharging group. The second version is a development of e original version of the diesel 1900 cc engine with an optimized crankshaft, that employ a special steel, 300M, and that is verified for the aircraft requirements. Another version with an augmented stroke and with a total displacement of 2500 cc has been examined; the result is a 30% engine heavier. The last version proposed is a 1600 cc diesel engine that work at 5000 rpm, with a reduced stroke and capable of more than 200 CV; it was inspired to the Yamaha R1 motorcycle engine. The diesel aircraft engine design keeps the bore of 82 mm, while the stroke is reduced to 64.6 mm, so the engine size is reduced along with weight. The basement weight, in GD AlSi 9 MgMn alloy, is 8,5 kg. Crankshaft, rods and accessories have been redesigned to comply to aircraft standards. The result is that the overall size is increased of only the 8% when referred to the Yamaha engine spark ignition version, while the basement weight increases of 53 %, even if the bore of the diesel version is 11% lager. The original FIAT 1900 jtd piston has been slightly modified with the combustion chamber reworked to the compression ratio of 15:1. The material adopted for the piston is the aluminium alloy A390.0-T5 commonly used in the automotive field. The piston weight is 0,5 kg for the diesel engine. The crankshaft is verified to torsional vibrations according to the Lloyd register of shipping requirements. The 300M special steel crankshaft total weight is of 14,5 kg. The result reached is a very small and light engine that may be certified for general aviation: the engine weight, without the supercharger, air inlet assembly, auxiliary generators and high pressure body, is 44,7 kg and the total engine weight, with enlightened HP pump body and the titanium alloy turbocharger is less than 100 kg, the total displacement is 1365 cm3 and the estimated output power is 220 CV. The direct conversion of automotive piston engine to aircrafts pays too huge weight penalties. In fact the main aircraft requirement is to optimize the power to weight ratio in order to obtain compact and fast engines for aeronautical use: this 1600 common rail diesel engine version demonstrates that these results can be reached.
Resumo:
The aim of this Doctoral Thesis is to develop a genetic algorithm based optimization methods to find the best conceptual design architecture of an aero-piston-engine, for given design specifications. Nowadays, the conceptual design of turbine airplanes starts with the aircraft specifications, then the most suited turbofan or turbo propeller for the specific application is chosen. In the aeronautical piston engines field, which has been dormant for several decades, as interest shifted towards turboaircraft, new materials with increased performance and properties have opened new possibilities for development. Moreover, the engine’s modularity given by the cylinder unit, makes it possible to design a specific engine for a given application. In many real engineering problems the amount of design variables may be very high, characterized by several non-linearities needed to describe the behaviour of the phenomena. In this case the objective function has many local extremes, but the designer is usually interested in the global one. The stochastic and the evolutionary optimization techniques, such as the genetic algorithms method, may offer reliable solutions to the design problems, within acceptable computational time. The optimization algorithm developed here can be employed in the first phase of the preliminary project of an aeronautical piston engine design. It’s a mono-objective genetic algorithm, which, starting from the given design specifications, finds the engine propulsive system configuration which possesses minimum mass while satisfying the geometrical, structural and performance constraints. The algorithm reads the project specifications as input data, namely the maximum values of crankshaft and propeller shaft speed and the maximal pressure value in the combustion chamber. The design variables bounds, that describe the solution domain from the geometrical point of view, are introduced too. In the Matlab® Optimization environment the objective function to be minimized is defined as the sum of the masses of the engine propulsive components. Each individual that is generated by the genetic algorithm is the assembly of the flywheel, the vibration damper and so many pistons, connecting rods, cranks, as the number of the cylinders. The fitness is evaluated for each individual of the population, then the rules of the genetic operators are applied, such as reproduction, mutation, selection, crossover. In the reproduction step the elitist method is applied, in order to save the fittest individuals from a contingent mutation and recombination disruption, making it undamaged survive until the next generation. Finally, as the best individual is found, the optimal dimensions values of the components are saved to an Excel® file, in order to build a CAD-automatic-3D-model for each component of the propulsive system, having a direct pre-visualization of the final product, still in the engine’s preliminary project design phase. With the purpose of showing the performance of the algorithm and validating this optimization method, an actual engine is taken, as a case study: it’s the 1900 JTD Fiat Avio, 4 cylinders, 4T, Diesel. Many verifications are made on the mechanical components of the engine, in order to test their feasibility and to decide their survival through generations. A system of inequalities is used to describe the non-linear relations between the design variables, and is used for components checking for static and dynamic loads configurations. The design variables geometrical boundaries are taken from actual engines data and similar design cases. Among the many simulations run for algorithm testing, twelve of them have been chosen as representative of the distribution of the individuals. Then, as an example, for each simulation, the corresponding 3D models of the crankshaft and the connecting rod, have been automatically built. In spite of morphological differences among the component the mass is almost the same. The results show a significant mass reduction (almost 20% for the crankshaft) in comparison to the original configuration, and an acceptable robustness of the method have been shown. The algorithm here developed is shown to be a valid method for an aeronautical-piston-engine preliminary project design optimization. In particular the procedure is able to analyze quite a wide range of design solutions, rejecting the ones that cannot fulfill the feasibility design specifications. This optimization algorithm could increase the aeronautical-piston-engine development, speeding up the production rate and joining modern computation performances and technological awareness to the long lasting traditional design experiences.
Resumo:
This PhD Thesis is part of a long-term wide research project, carried out by the "Osservatorio Astronomico di Bologna (INAF-OABO)", that has as primary goal the comprehension and reconstruction of formation mechanism of galaxies and their evolution history. There is now substantial evidence, both from theoretical and observational point of view, in favor of the hypothesis that the halo of our Galaxy has been at least partially, built up by the progressive accretion of small fragments, similar in nature to the present day dwarf galaxies of the Local Group. In this context, the photometric and spectroscopic study of systems which populate the halo of our Galaxy (i.e. dwarf spheroidal galaxy, tidal streams, massive globular cluster, etc) permits to discover, not only the origin and behaviour of these systems, but also the structure of our Galactic halo, combined with its formation history. In fact, the study of the population of these objects and also of their chemical compositions, age, metallicities and velocity dispersion, permit us not only an improvement in the understanding of the mechanisms that govern the Galactic formation, but also a valid indirect test for cosmological model itself. Specifically, in this Thesis we provided a complete characterization of the tidal Stream of the Sagittarius dwarf spheroidal galaxy, that is the most striking example of the process of tidal disruption and accretion of a dwarf satellite in to our Galaxy. Using Red Clump stars, extracted from the catalogue of the Sloan Digital Sky Survey (SDSS) we obtained an estimate of the distance, the depth along the line of sight and of the number density for each detected portion of the Stream (and more in general for each detected structure along our line of sight). Moreover comparing the relative number (i.e. the ratio) of Blue Horizontal Branch stars and Red Clump stars (the two features are tracers of different age/different metallicity populations) in the main body of the galaxy and in the Stream, in order to verify the presence of an age-metallicity gradient along the Stream. We also report the detection of a population of Red Clump stars probably associated with the recently discovered Bootes III stellar system. Finally, we also present the results of a survey of radial velocities over a wide region, extending from r ~ 10' out to r ~ 80' within the massive star cluster Omega Centauri. The survey was performed with FLAMES@VLT, to study the velocity dispersion profile in the outer regions of this stellar system. All the results presented in this Thesis, have already been published in refeered journals.
Resumo:
The aim of this thesis was to investigate novel techniques to create complex hierarchical chemical patterns on silica surfaces with micro to nanometer sized features. These surfaces were used for a site-selective assembly of colloidal particles and oligonucleotides. To do so, functionalised alkoxysilanes (commercial and synthesised ones) were deposited onto planar silica surfaces. The functional groups can form reversible attractive interactions with the complementary surface layers of the opposing objects that need to be assembled. These interactions determine the final location and density of the objects onto the surface. Photolithographically patterned silica surfaces were modified with commercial silanes, in order to create hydrophilic and hydrophobic regions on the surface. Assembly of hydrophobic silica particles onto these surfaces was investigated and finally, pH and charge effects on the colloidal assembly were analysed. In the second part of this thesis the concept of novel, "smart" alkoxysilanes is introduced that allows parallel surface activation and patterning in a one-step irradiation process. These novel species bear a photoreactive head-group in a protected form. Surface layers made from these molecules can be irradiated through a mask to remove the protecting group from selected regions and thus generate lateral chemical patterns of active and inert regions on the substrate. The synthesis of an azide-reactive alkoxysilane was successfully accomplished. Silanisation conditions were carefully optimised as to guarantee a smooth surface layer, without formation of micellar clusters. NMR and DLS experiments corroborated the absence of clusters when using neither water nor NaOH as catalysts during hydrolysis, but only the organic solvent itself. Upon irradiation of the azide layer, the resulting nitrene may undergo a variety of reactions depending on the irradiation conditions. Contact angle measurements demonstrated that the irradiated surfaces were more hydrophilic than the non-irradiated azide layer and therefore the formation of an amine upon irradiation was postulated. Successful photoactivation could be demonstrated using condensation patterns, which showed a change in wettability on the wafer surface upon irradiation. Colloidal deposition with COOH functionalised particles further underlined the formation of more hydrophilic species. Orthogonal photoreactive silanes are described in the third part of this thesis. The advantage of orthogonal photosensitive silanes is the possibility of having a coexistence of chemical functionalities homogeneously distributed in the same layer, by using appropriate protecting groups. For this purpose, a 3',5'-dimethoxybenzoin protected carboxylic acid silane was successfully synthesised and the kinetics of its hydrolysis and condensation in solution were analysed in order to optimise the silanisation conditions. This compound was used together with a nitroveratryl protected amino silane to obtain bicomponent surface layers. The optimum conditions for an orthogonal deprotection of surfaces modified with this two groups were determined. A 2-step deprotection process through a mask generated a complex pattern on the substrate by activating two different chemistries at different sites. This was demonstrated by colloidal adsorption and fluorescence labelling of the resulting substrates. Moreover, two different single stranded oligodeoxynucleotides were immobilised onto the two different activated areas and then hybrid captured with their respective complementary, fluorescent labelled strand. Selective hybridisation could be shown, although non-selective adsorption issues need to be resolved, making this technique attractive for possible DNA microarrays.
Resumo:
We have elaborated a multistep strategy to synthesize ABAB-type tetraureas. There are overall nine steps but they involve very simple chemistry. The sequence starts with a 1,3-dialkylation and this is the step in which a difference between distal phenolic units is introduced. The selective ipso-nitration in the next step is based on the difference in reactivity between free phenolic units and alkylated ones. The direct reaction of tetraamino calixarene with tolylisocyanate appears not to be an appropriate method to synthesize 1,3-ditolylurea calixarenes but can be used to get tetraureas of ABBB- and AABB-types in two steps with yields of about 60%. A complete regioselective dimerization was obtained with mono-loop derivatives in which two adjacent urea residues are covalently connected. As predicted/expected the loop prevents the formation of one regioisomer, and only the dimer in which the open-chain residue slips through the loop is formed. To synthesize mono-loop tetraureas 1,2-diBoc protected tetraamino calixarene was acylated with activated di-urethanes under high dilution conditions. Di-loop compounds were synthesized by two different ways. In the reaction of tetraamine and di-urethanes the yield is about 30-40%. The second method is based on the metathesis reaction within a suitable heterodimer. For this strategy, tetraurea derivatives with residues which have terminal double bonds were prepared. The exclusive formation of the heterodimer with tetratosylurea as template is the key point in this strategy. Metathesis followed by hydrogenation give exceptionally good yields (> 80%) of the loop compounds. All the NMR data for di-loop compounds confirm that the loops prevent the interaction of the urea residues which are connected and thus, as expected, the di-loop derivatives do not form homodimers. The heterodimer between di-loop compounds and tetratolylurea (open-chain tetraureas) was the only species observed for a 1:1 mixture in benzene or chloroform. The rational synthesis of bis-[2]catenanes was a consequence of the selective formation of one regioisomer of mono-loop derivatives and the exclusive formation of heterodimers by di-loop derivatives. The formation of interlocking-ring in the synthesis of bis-[2]catenanes is an additional evidence that one open-chain residue slips through the loop in mono- or di-loop derivatives. Exceptionally good yields in the synthesis of bis-[2]catenanes are due to the high preorganization in the dimer which undergoes the metathesis. This preorganization decreases the number of the wrong connections and favors the new connections to be formed. Although the procedure for working up the reaction mixture should be still improved, these results are promising. A C2-symmetrical bis-[2]catenane was successfully resolved by column chromatography using a chiral stationary phase. Thus it should be possible to separate a larger amount to obtain pure enantiomers for further studies.
Resumo:
The research has included the efforts in designing, assembling and structurally and functionally characterizing supramolecular biofunctional architectures for optical biosensing applications. In the first part of the study, a class of interfaces based on the biotin-NeutrAvidin binding matrix for the quantitative control of enzyme surface coverage and activity was developed. Genetically modified ß-lactamase was chosen as a model enzyme and attached to five different types of NeutrAvidin-functionalized chip surfaces through a biotinylated spacer. All matrices are suitable for achieving a controlled enzyme surface density. Data obtained by SPR are in excellent agreement with those derived from optical waveguide measurements. Among the various protein-binding strategies investigated in this study, it was found that stiffness and order between alkanethiol-based SAMs and PEGylated surfaces are very important. Matrix D based on a Nb2O5 coating showed a satisfactory regeneration possibility. The surface-immobilized enzymes were found to be stable and sufficiently active enough for a catalytic activity assay. Many factors, such as the steric crowding effect of surface-attached enzymes, the electrostatic interaction between the negatively charged substrate (Nitrocefin) and the polycationic PLL-g-PEG/PEG-Biotin polymer, mass transport effect, and enzyme orientation, are shown to influence the kinetic parameters of catalytic analysis. Furthermore, a home-built Surface Plasmon Resonance Spectrometer of SPR and a commercial miniature Fiber Optic Absorbance Spectrometer (FOAS), served as a combination set-up for affinity and catalytic biosensor, respectively. The parallel measurements offer the opportunity of on-line activity detection of surface attached enzymes. The immobilized enzyme does not have to be in contact with the catalytic biosensor. The SPR chip can easily be cleaned and used for recycling. Additionally, with regard to the application of FOAS, the integrated SPR technique allows for the quantitative control of the surface density of the enzyme, which is highly relevant for the enzymatic activity. Finally, the miniaturized portable FOAS devices can easily be combined as an add-on device with many other in situ interfacial detection techniques, such as optical waveguide lightmode spectroscopy (OWLS), the quartz crystal microbalance (QCM) measurements, or impedance spectroscopy (IS). Surface plasmon field-enhanced fluorescence spectroscopy (SPFS) allows for an absolute determination of intrinsic rate constants describing the true parameters that control interfacial hybridization. Thus it also allows for a study of the difference of the surface coupling influences between OMCVD gold particles and planar metal films presented in the second part. The multilayer growth process was found to proceed similarly to the way it occurs on planar metal substrates. In contrast to planar bulk metal surfaces, metal colloids exhibit a narrow UV-vis absorption band. This absorption band is observed if the incident photon frequency is resonant with the collective oscillation of the conduction electrons and is known as the localized surface plasmon resonance (LSPR). LSPR excitation results in extremely large molar extinction coefficients, which are due to a combination of both absorption and scattering. When considering metal-enhanced fluorescence we expect the absorption to cause quenching and the scattering to cause enhancement. Our further study will focus on the developing of a detection platform with larger gold particles, which will display a dominant scattering component and enhance the fluorescence signal. Furthermore, the results of sequence-specific detection of DNA hybridization based on OMCVD gold particles provide an excellent application potential for this kind of cheap, simple, and mild preparation protocol applied in this gold fabrication method. In the final chapter, SPFS was used for the in-depth characterizations of the conformational changes of commercial carboxymethyl dextran (CMD) substrate induced by pH and ionic strength variations were studied using surface plasmon resonance spectroscopy. The pH response of CMD is due to the changes in the electrostatics of the system between its protonated and deprotonated forms, while the ionic strength response is attributed from the charge screening effect of the cations that shield the charge of the carboxyl groups and prevent an efficient electrostatic repulsion. Additional studies were performed using SPFS with the aim of fluorophore labeling the carboxymethyl groups. CMD matrices showed typical pH and ionic strength responses, such as high pH and low ionic strength swelling. Furthermore, the effects of the surface charge and the crosslink density of the CMD matrix on the extent of stimuli responses were investigated. The swelling/collapse ratio decreased with decreasing surface concentration of the carboxyl groups and increasing crosslink density. The study of the CMD responses to external and internal variables will provide valuable background information for practical applications.
Resumo:
Wide rim tetraurea calix[4]arenes form hydrogen bonded dimeric capsules in apolar solvents in the presence of a suitable guest, which must be included in the cavity. The monomeric and dimeric form are never observed simultaneously under usual conditions. In general the combination of two different alkyl or aryl tetraurea derivatives results in the mixture of two homodimers and a heterodimer, however, only the heterodimeric species is observed in the 1:1 mixture of aryl and tosyl ureas. The (hetero)dimerization of oligourea calix[4]arenes (units) was used to construct larger structures via self-assembly of multiple calixarenes (building blocks) containing two (or more) covalently connected units. Among these self-assembled structures linear or branched polymers, cyclic oligomers and well-organized dendrimers were envisaged. The synthesis of the building blocks requires the preparation of calix[4]arene units possessing one (or more) functional group at the narrow or wide rim. Finally the oligourea units were covalently connected either directly or via suitable spacers within appropriate building blocks using amide bonds. Self-assembly properties of such building blocks were investigated.
Resumo:
Gels are materials that are easier to recognize than to define. For all practical purpose, a material is termed a gel if the whole volume of liquid is completely immobilized as usually tested by the ‘tube inversion’ method. Recently, supramolecular gels obtained from low molecular weight gelators (LMWGs) have attracted considerable attention in materials science since they represent a new class of smart materials sensitive to external stimuli, such as temperature, ultrasounds, light, chemical species and so on. Accordingly, during the past years a large variety of potentialities and applications of these soft materials in optoelectronics, as electronic devices, light harvesting systems and sensors, in bio-materials and in drug delivery have been reported. Spontaneous self-assembly of low molecular weight molecules is a powerful tool that allows complex supramolecular nanoscale structures to be built. The weak and non-covalent interactions such as hydrogen bonding, π–π stacking, coordination, electrostatic and van der Waals interactions are usually considered as the most important features for promoting sol-gel equilibria. However, the occurrence of gelation processes is ruled by further “external” factors, among which the temperature and the nature of the solvents that are employed are of crucial importance. For example, some gelators prefer aromatic or halogenated solvents and in some cases both the gelation temperature and the type of the solvent affect the morphologies of the final aggregation. Functionalized cyclopentadienones are fascinating systems largely employed as building blocks for the synthesis of polyphenylene derivatives. In addition, it is worth noting that structures containing π-extended conjugated chromophores with enhanced absorption properties are of current interest in the field of materials science since they can be used as “organic metals”, as semiconductors, and as emissive or absorbing layers for OLEDs or photovoltaics. The possibility to decorate the framework of such structures prompted us to study the synthesis of new hydroxy propargyl arylcyclopentadienone derivatives. Considering the ability of such systems to give π–π stacking interactions, the introduction on a polyaromatic structure of polar substituents able to generate hydrogen bonding could open the possibility to form gels, although any gelation properties has been never observed for these extensively studied systems. we have synthesized a new class of 3,4-bis (4-(3-hydroxy- propynyl) phenyl) -2, 5-diphenylcyclopentadienone derivatives, one of which (1a) proved to be, for the first time, a powerful organogelator. The experimental results indicated that the hydroxydimethylalkynyl substituents are fundamental to guarantee the gelation properties of the tetraarylcyclopentadienone unit. Combining the results of FT-IR, 1H NMR, UV-vis and fluorescence emission spectra, we believe that H-bonding and π–π interactions are the driving forces played for the gel formation. The importance of soft materials lies on their ability to respond to external stimuli, that can be also of chemical nature. In particular, high attention has been recently devoted to anion responsive properties of gels. Therefore the behaviour of organogels of 1a in toluene, ACN and MeNO2 towards the addition of 1 equivalent of various tetrabutylammonium salts were investigated. The rheological properties of gels in toluene, ACN and MeNO2 with and without the addition of Bu4N+X- salts were measured. In addition a qualitative analysis on cation recognition was performed. Finally the nature of the cyclic core of the gelator was changed in order to verify how the carbonyl group was essential to gel solvents. Until now, 4,5-diarylimidazoles have been synthesized.