984 resultados para aerial dust, emission rate, olfactometry, particulate matter
Resumo:
A boron-doped diamond electrode is used for determination of Mn(II) in atmospheric particulate matter by square wave cathodic stripping voltammetry. The analytical curve was linear for Mn(II) concentrations between 5.0 and 37.5 µg L-1, with quantification limit of 3.6 µg L-1. The precision was evaluated by the relative standard deviation, with values between 5.1% and 9.3%. The electrode is free of adsorption, minimizing memory effects. Samples collected in the workplace atmosphere of a foundry had Mn(II) concentrations between 0.4 and 4 µg m-3. No significant differences were observed between the proposed method and inductively coupled plasma optical emission spectroscopy.
Resumo:
The main objective of this study was the identification of sources generating particulate matter in the atmospheric aerosols of Sete Lagoas, Minas Gerais. The measurement of the mineral composition was accomplished by X-ray diffractometry and the elemental concentration by neutron activation analysis. The results showed that Al, Cl, Cu, Fe, K, Mg and Na are the predominant chemical elements in the total suspended particles (TPS). The presence of Na, Ba, Cl, Cu, Eu, Fe and Sm in those particles with aerodynamic diameter smaller than 10 µm (PM10), indicates that soil dust and ceramic and pig iron industries are the main sources of air quality degradation in the region.
Resumo:
Trace element concentrations were measured in atmospheric particulate matter collected in 2009 and 2010, in a Brazilian region influenced by pre-harvest burning of sugar cane crops. For coarse particles, high concentrations of Al, Fe, K and Ca suggested that re-suspended soil dust was the main source of aerosol trace elements, subsequently confirmed by XRD analysis. High levels of K, Zn, As, Cd and Pb were found in fine particles, confirming the contribution of biomass burning and vehicle emissions, whereas Na, Al, K, Fe and Zn were the representative elements in ultrafine particles, influenced by a diversity of sources.
Resumo:
Coal, natural gas and petroleum-based liquid fuels are still the most widely used energy sources in modern society. The current scenario contrasts with the foreseen shortage of petroleum that was spread out in the beginning of the XXI century, when the concept of "energy security" emerged as an urgent agenda to ensure a good balance between energy supply and demand. Much beyond protecting refineries and oil ducts from terrorist attacks, these issues soon developed to a portfolio of measures related to process sustainability, involving at least three fundamental dimensions: (a) the need for technological breakthroughs to improve energy production worldwide; (b) the improvement of energy efficiency in all sectors of modern society; and (c) the increase of the social perception that education is a key-word towards a better use of our energy resources. Together with these technological, economic or social issues, "energy security" is also strongly influenced by environmental issues involving greenhouse gas emissions, loss of biodiversity in environmentally sensitive areas, pollution and poor solid waste management. For these and other reasons, the implementation of more sustainable practices in our currently available industrial facilities and the search for alternative energy sources that could partly replace the fossil fuels became a major priority throughout the world. Regarding fossil fuels, the main technological bottlenecks are related to the exploitation of less accessible petroleum resources such as those in the pre-salt layer, ranging from the proper characterization of these deep-water oil reservoirs, the development of lighter and more efficient equipment for both exploration and exploitation, the optimization of the drilling techniques, the achievement of further improvements in production yields and the establishment of specialized training programs for the technical staff. The production of natural gas from shale is also emerging in several countries but its production in large scale has several problems ranging from the unavoidable environmental impact of shale mining as well as to the bad consequences of its large scale exploitation in the past. The large scale use of coal has similar environmental problems, which are aggravated by difficulties in its proper characterization. Also, the mitigation of harmful gases and particulate matter that are released as a result of combustion is still depending on the development of new gas cleaning technologies including more efficient catalysts to improve its emission profile. On the other hand, biofuels are still struggling to fulfill their role in reducing our high dependence on fossil fuels. Fatty acid alkyl esters (biodiesel) from vegetable oils and ethanol from cane sucrose and corn starch are mature technologies whose market share is partially limited by the availability of their raw materials. For this reason, there has been a great effort to develop "second-generation" technologies to produce methanol, ethanol, butanol, biodiesel, biogas (methane), bio-oils, syngas and synthetic fuels from lower grade renewable feedstocks such as lignocellulosic materials whose consumption would not interfere with the rather sensitive issues of food security. Advanced fermentation processes are envisaged as "third generation" technologies and these are primarily linked to the use of algae feedstocks as well as other organisms that could produce biofuels or simply provide microbial biomass for the processes listed above. Due to the complexity and cost of their production chain, "third generation" technologies usually aim at high value added biofuels such as biojet fuel, biohydrogen and hydrocarbons with a fuel performance similar to diesel or gasoline, situations in which the use of genetically modified organisms is usually required. In general, the main challenges in this field could be summarized as follows: (a) the need for prospecting alternative sources of biomass that are not linked to the food chain; (b) the intensive use of green chemistry principles in our current industrial activities; (c) the development of mature technologies for the production of second and third generation biofuels; (d) the development of safe bioprocesses that are based on environmentally benign microorganisms; (e) the scale-up of potential technologies to a suitable demonstration scale; and (f) the full understanding of the technological and environmental implications of the food vs. fuel debate. On the basis of these, the main objective of this article is to stimulate the discussion and help the decision making regarding "energy security" issues and their challenges for modern society, in such a way to encourage the participation of the Brazilian Chemistry community in the design of a road map for a safer, sustainable and prosper future for our nation.
Resumo:
With the occurrence of fossil fuels such as oil, gas and coal we found new sources of energy that have played a critical role in the progress of our modern society. Coal is very ample compared to the other two fossil fuels. Global coal reserves at the end of 2005 were estimated at 847,5 billion tones. Along with the major energy sources, coal is the most fast growing fuel on a global basis, it provides 26% of primary energy needs and remains essential to the economies of many developed and developing countries. Coal-fired power generation accounts for 41% of the world‘s total electricity production and in some countries, such as South Africa, Poland, China, Australia, Kazakhstan and India is on very high level. Still, coal utilization represents challenges related to high emissions of air pollutants such as sulphur and nitrogen dioxides, particulate matter, mercury and carbon dioxide. In relation to these a number of technologies have been developed and are in marketable use, with further potential developments towards ―Near Zero Emission‖ coal plants. In present work, coals mined in Russia and countries of Former Soviet Union were reviewed. Distribution of coal reserves on the territory of Russia and the potential for power generation from coal-fired plants across Russia was shown. Physical and chemical properties of coals produced were listed and examined, as main factor influencing on design of the combustion facility and incineration process performance. The ash-related problems in coal-fired boilers were described. The analysis of coal ash of Russia and countries of Former Soviet Union were prepared. Feasible combustion technologies also were reviewed.
Resumo:
This study aims to evaluate the prognostic value of microscopic parameters of asymptomatic leaves of Clusia hilariana Schltdl. subjected to particulate deposition of iron (2.14 mg cm-2 day-1) for 45 consecutive days. Samples of young and expanded leaves without symptoms were collected and subjected to light and scanning electron microscopy techniques. The height of the epidermal cells on both surfaces of the leaf and the thickness of the hypodermis, the chlorophyll parenchyma, and the leaf blade were measured. Micromorphological injury occurred in the abaxial surface of young leaves and on both surfaces of expanded leaves. Erosion of the epicuticular wax and cuticle rupture were frequent on the adaxial surface, while on the abaxial surface of both leaves there was a loss of sinuosity on the anticlinal wall of the epidermal cells, stomatal deformity and obstruction. Micromorphometric alterations were seen in all leaf tissues except in the height of epidermic cells, probably due to the thick cuticle and prominent cuticular flanges. The highest difference in thickness of the leaf blade was seen in young leaves of plants subjected to SPMFe, indicating greater sensibility to particulate iron in comparison to the expanded leaves. The micromorphological and micromorphometric alterations in the leaf blade of Clusia hilariana Schltdl. showed the prognostic potential of these tools on the evaluation of impacts caused by the deposition of particulate matter, especially in the 'Restinga' natural vegetation, where the exposure is increasing due to the presence of iron ore industry in their surroundings.
Resumo:
Oxidative stress plays a major role in the pathogenesis of particle-dependent lung injury. Ambient particle levels from vehicles have not been previously shown to cause oxidative stress to the lungs. The present study was conducted to a) determine whether short-term exposure to ambient levels of particulate air pollution from vehicles elicits inflammatory responses and lipid peroxidation in rat lungs, and b) determine if intermittent short-term exposures (every 4 days) induce some degree of tolerance. Three-month-old male Wistar rats were exposed to ambient particulate matter (PM) from vehicles (N = 30) for 6 or 20 continuous hours, or for intermittent (5 h) periods during 20 h for 4 consecutive days or to filtered air (PM <10 µm; N = 30). Rats continuously breathing polluted air for 20 h (P-20) showed a significant increase in the total number of leukocytes in bronchoalveolar lavage compared to control (C-20: 2.61 x 105 ± 0.51;P-20: 5.01 x 105 ± 0.81; P < 0.05) and in lipid peroxidation ([MDA] nmol/mg protein: C-20: 0.148 ± 0.01; P-20: 0.226 ± 0.02; P < 0.05). Shorter exposure (6 h) and intermittent 5-h exposures over a period of 4 days did not cause significant changes in leukocytes. Lipid damage resulting from 20-h exposure to particulate air pollution did not cause a significant increase in lung water content. These data suggest oxidative stress as one of the mechanisms responsible for the acute adverse respiratory effects of particles, and suggest that short-term inhalation of ambient particulate air pollution from street with high automobile traffic represents a biological hazard.
Resumo:
Few studies evaluate the amount of particulate matter less than 2.5 mm in diameter (PM2.5) in relation to a change in lung function among adults in a population. The aim of this study was to assess the association of coal as a domestic energy source to pulmonary function in an adult population in inner-city areas of Zunyi city in China where coal use is common. In a cross-sectional study of 104 households, pulmonary function measurements were assessed and compared in 110 coal users and 121 non-coal users (≥18 years old) who were all nonsmokers. Several sociodemographic factors were assessed by questionnaire, and ventilatory function measurements including forced vital capacity (FVC), forced expiratory volume in 1 s (FEV1), the FEV1/FVC ratio, and peak expiratory flow rate (PEFR) were compared between the 2 groups. The amount of PM2.5 was also measured in all residences. There was a significant increase in the relative concentration of PM2.5 in the indoor kitchens and living rooms of the coal-exposed group compared to the non-coal-exposed group. In multivariate analysis, current exposure to coal smoke was associated with a 31.7% decrease in FVC, a 42.0% decrease in FEV1, a 7.46% decrease in the FEV1/FVC ratio, and a 23.1% decrease in PEFR in adult residents. The slope of lung function decrease for Chinese adults is approximately a 2-L decrease in FVC, a 3-L decrease in FEV1, and an 8 L/s decrease in PEFR per count per minute of PM2.5 exposure. These results demonstrate the harmful effects of indoor air pollution from coal smoke on the lung function of adult residents and emphasize the need for public health efforts to decrease exposure to coal smoke.
Resumo:
Introducción: la contaminación atmosférica no solo tiene efectos sobre el sistema respiratorio sino también sobre el cardiovascular. El objetivo de este estudio es generar evidencia que permita establecer una asociación entre el infarto agudo del miocardio y la concentración de PM10 en el ambiente como un estudio preliminar para un grupo de pacientes en Bogotá. Metodología: la asociación entre la concentración del material particulado (en este caso PM10 medido en la estación más cercana del lugar reportado por el paciente) y el infarto agudo del miocardio se estableció utilizando el diseño case crossover. Se utilizó información de las historias clínicas de los pacientes con infarto agudo del miocardio que ingresaron al Servicio de Urgencias de la FSFB, y las concentraciones de PM10 medido en la estación más cercana al lugar de inicio de los síntomas de síndrome coronario agudo, reportado por el paciente. Resultados: se encontró que la asociación entre la concentración de PM10 y el diagnóstico de infarto agudo del miocardio es estadísticamente significativa teniendo en cuenta tres momentos de control: 2 horas antes del evento, 24 horas antes del evento y 48 horas antes del evento. Discusión: este estudio sugiere que las altas concentraciones de material particulado en el ambiente son un factor de riesgo para el desarrollo de infarto agudo del miocardio especialmente en personas con enfermedad coronaria subyacente. Con esta investigación se demuestra la importancia de generar acciones que disminuyan la contaminación de la ciudad y de esta forma proteger la salud de las personas.
Resumo:
La exposición a polvo de cemento y sílice ha sido estudiada por años en países como Estados Unidos y Canadá, cuando el polvo de cemento se inhala durante diferentes actividades, se puede ocasionar afectación del tracto respiratorio de las personas expuestas. El estudio “Perfil de exposición ocupacional a polvo de cemento y sílice cristalina en procesos de cementación y Fracturamiento hidráulico en el sector Oil & Gas en Colombia: un estudio retrospectivo (2009 – 2013).” Permitió identificar las actividades funcionales que representan un riesgo potencial por la presencia de partículas aerosuspendidas, analizar una base de datos que reúne cerca de 18298 registros de evaluaciones higiénicas en el sector Oil & Gas, realizar posteriormente el cálculo de material particulado en la fracción respirable y sílice cristalina aplicables para cada proceso y el procesamiento de los datos estadísticamente, confrontar estos estimadores estadísticos con los valores límites permisibles definidos por el gobierno nacional, los resultados incluyeron la caracterización de un perfil de exposición ocupacional por actividad funcional para el proceso de cementación, la identificación de los trabajadores más expuestos según las condiciones de exposición y cuáles de estos perfiles superan los límites máximos permisibles para un turno de trabajo de 12 horas, esta información permitirá a los profesionales de la salud e higiene laboral orientar actividades de seguimiento, vigilancia y control en los grupos de exposición similar específicos. Para el proceso de fracturamiento hidráulico los datos encontrados no fueron estadísticamente significativos.
Resumo:
Introducción: La minería subterránea es considerada de alto riesgo afectando la salud de trabajadores expuestos a factores de riesgo y condiciones de trabajo, sin que exista información sobre concentración de material particulado y niveles de riesgo. Objetivo: Determinar la exposición ambiental a polvo de carbón y su relación con las condiciones de higiene y seguridad industrial en los trabajadores que laboran en minas subterráneas de la región de Boyacá. Materiales y métodos: Estudio de corte transversal donde se emplearon cuestionarios para recolectar datos sobre condiciones de trabajo y se realizaron muestreos ambientales de material particulado mediante método de análisis gravimétrico y metodología 0600 de NIOSH. Resultados: Estudio realizado en 19 empresas con 232 trabajadores, con edades entre 20 y 73 años. La concentración promedio de material particulado en los 209 monitoreos realizados fue de 3,4 +3,4mg/m3. El nivel de riesgo alto por exposición a polvo de carbón se encontró en el 70,8% (148) de los monitoreos y el 20,6% (43) en nivel severo, con promedio de 4,9 +4,9 mg/m3. Asociaciones significativas se reportaron entre trabajadores que no usaban protección respiratoria y nivel de riesgo medio y alto (p=0,033); uso mascarilla sin cartucho y nivel de riesgo bajo y medio (p=0,013); el no uso de protección auditiva y niveles medio y alto (p=0,010) y consumo de cigarrillo en el trabajo y niveles medio, alto y severo (p=0,008). Conclusiones: Se determinó vinculación y relación significativa entre los niveles de riesgo alto y severo por exposición a polvo de carbón con concentraciones por encima de niveles permisibles y las condiciones de seguridad industrial de trabajadores
Resumo:
Coral growth rate can be affected by environmental parameters such as seawater temperature, depth, and light intensity. The natural reef environment is also disturbed by human influences such as anthropogenic pollutants, which in Barbados are released close to the reefs. Here we describe a relatively new method of assessing the history of pollution and explain how these effects have influenced the coral communities off the west coast of Barbados. We evaluate the relative impact of both anthropogenic pollutants and natural stresses. Sclerochronology documents framework and skeletal growth rate and records pollution history (recorded as reduced growth) for a suite of sampled Montastraea annularis coral cores. X-radiography shows annual growth band patterns of the corals extending back over several decades and indicates significantly lower growth rate in polluted sites. Results using laser-ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) on the whole sample (aragonite, organic matter, trapped particulate matter, etc.), have shown contrasting concentrations of the trace elements (Cu, Sn, Zn, and Pb) between corals at different locations and within a single coral. Deepwater corals 7 km apart, record different levels of Pb and Sn, suggesting that a current transported the metal pollution in the water. In addition, the 1995 hurricanes are associated with anomalous values for Sn and Cu from most sites. These are believed to result from dispersion of nearshore polluted water. We compared the concentrations of trace elements in the coral growth of particular years to those in the relevant contemporaneous seawater. Mean values for the concentration factor in the coral, relative to the water, ranged from 10 for Cu and Ni to 2.4 and 0.7 for Cd and Zn, respectively. Although the uncertainties are large (60-80%), the coral record enabled us to demonstrate the possibility of calculating a history of seawater pollution for these elements from the 1940s to 1997. Our values were much higher than those obtained from analysis of carefully cleaned coral aragonite; they demonstrate the incorporation of more contamination including that from particulate material as well as dissolved metals.
Resumo:
Hydrophobic chemicals are known to associate with sediment particles including those from both suspended particulate matter and bottom deposits. The complex and variable composition of natural particles makes it very difficult therefore, to predict the bioavailability of sediment-bound contaminants. To overcome these problems we have previously devised a test system using artificial particles, with or without humic acids, for use as an experimental model of natural sediments. In the present work we have applied this experimental technique to investigate the bioavailability and bioaccumulation of pyrene by the freshwater fingernail clam Sphaerium corneum. The uptake and accumulation of pyrene in clams exposed to the chemical in the presence of a sample of natural sediment was also investigated. According to the results obtained, particle surface properties and organic matter content are the key factors for assessing the bioavailability and bioaccumulation of pyrene by clams. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
The atmospheric component of the United Kingdom’s new High-resolution Global Environmental Model (HiGEM) has been run with interactive aerosol schemes that include biomass burning and mineral dust. Dust emission, transport, and deposition are parameterized within the model using six particle size divisions, which are treated independently. The biomass is modeled in three nonindependent modes, and emissions are prescribed from an external dataset. The model is shown to produce realistic horizontal and vertical distributions of these aerosols for each season when compared with available satellite- and ground-based observations and with other models. Combined aerosol optical depths off the coast of North Africa exceed 0.5 both in boreal winter, when biomass is the main contributor, and also in summer, when the dust dominates. The model is capable of resolving smaller-scale features, such as dust storms emanating from the Bode´ le´ and Saharan regions of North Africa and the wintertime Bode´ le´ low-level jet. This is illustrated by February and July case studies, in which the diurnal cycles of model variables in relation to dust emission and transport are examined. The top-of-atmosphere annual mean radiative forcing of the dust is calculated and found to be globally quite small but locally very large, exceeding 20 W m22 over the Sahara, where inclusion of dust aerosol is shown to improve the model radiative balance. This work extends previous aerosol studies by combining complexity with increased global resolution and represents a step toward the next generation of models to investigate aerosol–climate interactions. 1. Introduction Accurate modeling of mineral dust is known to be important because of its radiative impact in both numerical weather prediction models (Milton et al. 2008; Haywood et
Resumo:
We present a novel kinetic multi-layer model that explicitly resolves mass transport and chemical reaction at the surface and in the bulk of aerosol particles (KM-SUB). The model is based on the PRA framework of gas-particle interactions (Poschl-Rudich-Ammann, 2007), and it includes reversible adsorption, surface reactions and surface-bulk exchange as well as bulk diffusion and reaction. Unlike earlier models, KM-SUB does not require simplifying assumptions about steady-state conditions and radial mixing. The temporal evolution and concentration profiles of volatile and non-volatile species at the gas-particle interface and in the particle bulk can be modeled along with surface concentrations and gas uptake coefficients. In this study we explore and exemplify the effects of bulk diffusion on the rate of reactive gas uptake for a simple reference system, the ozonolysis of oleic acid particles, in comparison to experimental data and earlier model studies. We demonstrate how KM-SUB can be used to interpret and analyze experimental data from laboratory studies, and how the results can be extrapolated to atmospheric conditions. In particular, we show how interfacial and bulk transport, i.e., surface accommodation, bulk accommodation and bulk diffusion, influence the kinetics of the chemical reaction. Sensitivity studies suggest that in fine air particulate matter oleic acid and compounds with similar reactivity against ozone (carbon-carbon double bonds) can reach chemical lifetimes of many hours only if they are embedded in a (semi-)solid matrix with very low diffusion coefficients (< 10(-10) cm(2) s(-1)). Depending on the complexity of the investigated system, unlimited numbers of volatile and non-volatile species and chemical reactions can be flexibly added and treated with KM-SUB. We propose and intend to pursue the application of KM-SUB as a basis for the development of a detailed master mechanism of aerosol chemistry as well as for the derivation of simplified but realistic parameterizations for large-scale atmospheric and climate models.