750 resultados para Wireless sensor
Resumo:
Reliable electronic systems, namely a set of reliable electronic devices connected to each other and working correctly together for the same functionality, represent an essential ingredient for the large-scale commercial implementation of any technological advancement. Microelectronics technologies and new powerful integrated circuits provide noticeable improvements in performance and cost-effectiveness, and allow introducing electronic systems in increasingly diversified contexts. On the other hand, opening of new fields of application leads to new, unexplored reliability issues. The development of semiconductor device and electrical models (such as the well known SPICE models) able to describe the electrical behavior of devices and circuits, is a useful means to simulate and analyze the functionality of new electronic architectures and new technologies. Moreover, it represents an effective way to point out the reliability issues due to the employment of advanced electronic systems in new application contexts. In this thesis modeling and design of both advanced reliable circuits for general-purpose applications and devices for energy efficiency are considered. More in details, the following activities have been carried out: first, reliability issues in terms of security of standard communication protocols in wireless sensor networks are discussed. A new communication protocol is introduced, allows increasing the network security. Second, a novel scheme for the on-die measurement of either clock jitter or process parameter variations is proposed. The developed scheme can be used for an evaluation of both jitter and process parameter variations at low costs. Then, reliability issues in the field of “energy scavenging systems” have been analyzed. An accurate analysis and modeling of the effects of faults affecting circuit for energy harvesting from mechanical vibrations is performed. Finally, the problem of modeling the electrical and thermal behavior of photovoltaic (PV) cells under hot-spot condition is addressed with the development of an electrical and thermal model.
Resumo:
Grazie al progresso dell'elettronica, ai giorni nostri, è possibile costruire dispositivi elettronici molto piccoli, che col passare del tempo lo sono sempre più. Questo ci permette di poter imboccare nuove strade nel mondo dell'informatica, sfruttando proprio questo fatto. Le dimensioni ridotte dei dispositivi in commercio, come sensori, attuatori, tag e tanto altro, sono particolarmente adatte a nuovi scenari applicativi. Internet of Things è una visione in cui Internet viene esteso alle cose. Facendo largo uso di dispositivi come sensori e tag è possibile realizzare sistemi intelligenti che possono avere riscontri positivi nella vita di tutti i giorni. Tracciare la posizione degli oggetti, monitorare pazienti da remoto, rilevare dati sull'ambiente per realizzare sistemi automatici (ad esempio regolare automaticamente la luce o la temperatura di una stanza) sono solo alcuni esempi. Internet of Things è la naturale evoluzione di Internet, ed è destinato a cambiare radicalmente la nostra vita futura, poichè la tecnologia sarà sempre più parte integrante della nostra vita, aumentando sempre più il nostro benessere e riducendo sempre più il numero delle azioni quotidiane da compiere. Sempre più sono middleware, le piattaforme e i sistemi operativi che nascono per cercare di eliminare o ridurre le problematiche relative allo sviluppo di sistemi di questo genere, e lo scopo di questa tesi è proprio sottolinearne l'importanza e di analizzare gli aspetti che questi middleware devono affrontare. La tesi è strutturata in questo modo: nel capitolo uno verrà fatta una introduzione a Internet of Things, analizzando alcuni degli innumerevoli scenari applicativi che ne derivano, insieme però alle inevitabili problematiche di tipo tecnologico e sociale. Nel secondo capitolo verranno illustrate le tecnologie abilitanti di Internet of Things, grazie alle quali è possibile realizzare sistemi intelligenti. Nel terzo capitolo verranno analizzati gli aspetti relativi ai middleware, sottolineandone l'importanza e prestando attenzione alle funzioni che devono svolgere, il tutto riportando anche degli esempi di middleware esistenti. Nel quarto capitolo verrà approfondito il middleware Java Embedded di Oracle.
Resumo:
Progettazione di un sistema di misura contactless per la tensione, da integrare in un nodo sensore di una Wireless Sensor Network per Smart Metering Distribuito
Resumo:
This paper examines the accuracy of software-based on-line energy estimation techniques. It evaluates today’s most widespread energy estimation model in order to investigate whether the current methodology of pure software-based energy estimation running on a sensor node itself can indeed reliably and accurately determine its energy consumption - independent of the particular node instance, the traffic load the node is exposed to, or the MAC protocol the node is running. The paper enhances today’s widely used energy estimation model by integrating radio transceiver switches into the model, and proposes a methodology to find the optimal estimation model parameters. It proves by statistical validation with experimental data that the proposed model enhancement and parameter calibration methodology significantly increases the estimation accuracy.
Resumo:
To master changing performance demands, autonomous transport vehicles are deployed to make inhouse material flow applications more flexible. The socalled cellular transport system consists of a multitude of small scale transport vehicles which shall be able to form a swarm. Therefore the vehicles need to detect each other, exchange information amongst each other and sense their environment. By provision of peripherally acquired information of other transport entities, more convenient decisions can be made in terms of navigation and collision avoidance. This paper is a contribution to collective utilization of sensor data in the swarm of cellular transport vehicles.
Resumo:
Internet of Things based systems are anticipated to gain widespread use in industrial applications. Standardization efforts, like 6L0WPAN and the Constrained Application Protocol (CoAP) have made the integration of wireless sensor nodes possible using Internet technology and web-like access to data (RESTful service access). While there are still some open issues, the interoperability problem in the lower layers can now be considered solved from an enterprise software vendors' point of view. One possible next step towards integration of real-world objects into enterprise systems and solving the corresponding interoperability problems at higher levels is to use semantic web technologies. We introduce an abstraction of real-world objects, called Semantic Physical Business Entities (SPBE), using Linked Data principles. We show that this abstraction nicely fits into enterprise systems, as SPBEs allow a business object centric view on real-world objects, instead of a pure device centric view. The interdependencies between how currently services in an enterprise system are used and how this can be done in a semantic real-world aware enterprise system are outlined, arguing for the need of semantic services and semantic knowledge repositories. We introduce a lightweight query language, which we use to perform a quantitative analysis of our approach to demonstrate its feasibility.
Resumo:
For smart cities applications, a key requirement is to disseminate data collected from both scalar and multimedia wireless sensor networks to thousands of end-users. Furthermore, the information must be delivered to non-specialist users in a simple, intuitive and transparent manner. In this context, we present Sensor4Cities, a user-friendly tool that enables data dissemination to large audiences, by using using social networks, or/and web pages. The user can request and receive monitored information by using social networks, e.g., Twitter and Facebook, due to their popularity, user-friendly interfaces and easy dissemination. Additionally, the user can collect or share information from smart cities services, by using web pages, which also include a mobile version for smartphones. Finally, the tool could be configured to periodically monitor the environmental conditions, specific behaviors or abnormal events, and notify users in an asynchronous manner. Sensor4Cities improves the data delivery for individuals or groups of users of smart cities applications and encourages the development of new user-friendly services.
Resumo:
The Internet of Things (IoT) is attracting considerable attention from the universities, industries, citizens and governments for applications, such as healthcare, environmental monitoring and smart buildings. IoT enables network connectivity between smart devices at all times, everywhere, and about everything. In this context, Wireless Sensor Networks (WSNs) play an important role in increasing the ubiquity of networks with smart devices that are low-cost and easy to deploy. However, sensor nodes are restricted in terms of energy, processing and memory. Additionally, low-power radios are very sensitive to noise, interference and multipath distortions. In this context, this article proposes a routing protocol based on Routing by Energy and Link quality (REL) for IoT applications. To increase reliability and energy-efficiency, REL selects routes on the basis of a proposed end-to-end link quality estimator mechanism, residual energy and hop count. Furthermore, REL proposes an event-driven mechanism to provide load balancing and avoid the premature energy depletion of nodes/networks. Performance evaluations were carried out using simulation and testbed experiments to show the impact and benefits of REL in small and large-scale networks. The results show that REL increases the network lifetime and services availability, as well as the quality of service of IoT applications. It also provides an even distribution of scarce network resources and reduces the packet loss rate, compared with the performance of well-known protocols.
Resumo:
BACKGROUND The number of older adults in the global population is increasing. This demographic shift leads to an increasing prevalence of age-associated disorders, such as Alzheimer's disease and other types of dementia. With the progression of the disease, the risk for institutional care increases, which contrasts with the desire of most patients to stay in their home environment. Despite doctors' and caregivers' awareness of the patient's cognitive status, they are often uncertain about its consequences on activities of daily living (ADL). To provide effective care, they need to know how patients cope with ADL, in particular, the estimation of risks associated with the cognitive decline. The occurrence, performance, and duration of different ADL are important indicators of functional ability. The patient's ability to cope with these activities is traditionally assessed with questionnaires, which has disadvantages (eg, lack of reliability and sensitivity). Several groups have proposed sensor-based systems to recognize and quantify these activities in the patient's home. Combined with Web technology, these systems can inform caregivers about their patients in real-time (e.g., via smartphone). OBJECTIVE We hypothesize that a non-intrusive system, which does not use body-mounted sensors, video-based imaging, and microphone recordings would be better suited for use in dementia patients. Since it does not require patient's attention and compliance, such a system might be well accepted by patients. We present a passive, Web-based, non-intrusive, assistive technology system that recognizes and classifies ADL. METHODS The components of this novel assistive technology system were wireless sensors distributed in every room of the participant's home and a central computer unit (CCU). The environmental data were acquired for 20 days (per participant) and then stored and processed on the CCU. In consultation with medical experts, eight ADL were classified. RESULTS In this study, 10 healthy participants (6 women, 4 men; mean age 48.8 years; SD 20.0 years; age range 28-79 years) were included. For explorative purposes, one female Alzheimer patient (Montreal Cognitive Assessment score=23, Timed Up and Go=19.8 seconds, Trail Making Test A=84.3 seconds, Trail Making Test B=146 seconds) was measured in parallel with the healthy subjects. In total, 1317 ADL were performed by the participants, 1211 ADL were classified correctly, and 106 ADL were missed. This led to an overall sensitivity of 91.27% and a specificity of 92.52%. Each subject performed an average of 134.8 ADL (SD 75). CONCLUSIONS The non-intrusive wireless sensor system can acquire environmental data essential for the classification of activities of daily living. By analyzing retrieved data, it is possible to distinguish and assign data patterns to subjects' specific activities and to identify eight different activities in daily living. The Web-based technology allows the system to improve care and provides valuable information about the patient in real-time.
Resumo:
Activities of daily living (ADL) are important for quality of life. They are indicators of cognitive health status and their assessment is a measure of independence in everyday living. ADL are difficult to reliably assess using questionnaires due to self-reporting biases. Various sensor-based (wearable, in-home, intrusive) systems have been proposed to successfully recognize and quantify ADL without relying on self-reporting. New classifiers required to classify sensor data are on the rise. We propose two ad-hoc classifiers that are based only on non-intrusive sensor data. METHODS: A wireless sensor system with ten sensor boxes was installed in the home of ten healthy subjects to collect ambient data over a duration of 20 consecutive days. A handheld protocol device and a paper logbook were also provided to the subjects. Eight ADL were selected for recognition. We developed two ad-hoc ADL classifiers, namely the rule based forward chaining inference engine (RBI) classifier and the circadian activity rhythm (CAR) classifier. The RBI classifier finds facts in data and matches them against the rules. The CAR classifier works within a framework to automatically rate routine activities to detect regular repeating patterns of behavior. For comparison, two state-of-the-art [Naïves Bayes (NB), Random Forest (RF)] classifiers have also been used. All classifiers were validated with the collected data sets for classification and recognition of the eight specific ADL. RESULTS: Out of a total of 1,373 ADL, the RBI classifier correctly determined 1,264, while missing 109 and the CAR determined 1,305 while missing 68 ADL. The RBI and CAR classifier recognized activities with an average sensitivity of 91.27 and 94.36%, respectively, outperforming both RF and NB. CONCLUSIONS: The performance of the classifiers varied significantly and shows that the classifier plays an important role in ADL recognition. Both RBI and CAR classifier performed better than existing state-of-the-art (NB, RF) on all ADL. Of the two ad-hoc classifiers, the CAR classifier was more accurate and is likely to be better suited than the RBI for distinguishing and recognizing complex ADL.
Resumo:
Energy consumption modelling by state based approaches often assume constant energy consumption values in each state. However, it happens in certain situations that during state transitions or even during a state the energy consumption is not constant and does fluctuate. This paper discusses those issues by presenting some examples from wireless sensor and wireless local area networks for such cases and possible solutions.
Resumo:
Resumen: Las redes de sensores inalámbricos han atraído mucha atención en los últimos años debido a la integración de tecnología inalámbrica, computación y tecnología de sensores. Estas redes consisten en una serie de nodos equipados con capacidades de procesamiento, comunicación y sensado. Utilizan protocolos especiales de radio para transmitir datos en un modo multisalto de operación. En este trabajo se propone utilizar una red de sensores para el monitoreo de las condiciones ambientales de Higiene y Seguridad en entornos industriales. Concretamente se monitorean Temperatura, Humedad, Ruido y Luminosidad. Se propone esta recolección de datos para dar soporte a la inspección anual de un auditor externo, por lo que no se considera esta recolección como crítica dado que no controlan ningún dispositivo. En primera instancia se aborda el problema utilizando una red de sensores con módulos que utilizan el protocolo 802.15 los cuales transmiten a un nodo maestro que sirve como gateway para enviar la información a un servidor que la almacena. La recolección de datos se realiza a través de una plataforma arduino como interface entre el módulo inalámbrico y los sensores. Esta primera propuesta es contrastada con un enfoque de Internet de las Cosas (IoT) utilizando módulos Arduino con WiFi embebido, denominados Wido, que permiten la comunicación de datos directamente al servidor de almacenaje. El trabajo comprende la caracterización del problema, elección del hardware, diseño de la red y la realización de pruebas para evaluar el funcionamiento de ambos enfoques.
Resumo:
Unattended Wireless Sensor Networks (UWSNs) operate in autonomous or disconnected mode: sensed data is collected periodically by an itinerant sink. Between successive sink visits, sensor-collected data is subject to some unique vulnerabilities. In particular, while the network is unattended, a mobile adversary (capable of subverting up to a fraction of sensors at a time) can migrate between compromised sets of sensors and inject fraudulent data. In this paper, we provide two collaborative authentication techniques that allow an UWSN to maintain integrity and authenticity of sensor data-in the presence of a mobile adversary-until the next sink visit. Proposed schemes use simple, standard, and inexpensive symmetric cryptographic primitives, coupled with key evolution and few message exchanges. We study their security and effectiveness, both analytically and via simulations. We also assess their robustness and show how to achieve the desired trade-off between performance and security.
Resumo:
Many context-aware applications rely on the knowledge of the position of the user and the surrounding objects to provide advanced, personalized and real-time services. In wide-area deployments, a routing protocol is needed to collect the location information from distant nodes. In this paper, we propose a new source-initiated (on demand) routing protocol for location-aware applications in IEEE 802.15.4 wireless sensor networks. This protocol uses a low power MAC layer to maximize the lifetime of the network while maintaining the communication delay to a low value. Its performance is assessed through experimental tests that show a good trade-off between power consumption and time delay in the localization of a mobile device.
Resumo:
Participatory Sensing combines the ubiquity of mobile phones with sensing capabilities of Wireless Sensor Networks. It targets pervasive collection of information, e.g., temperature, traffic conditions, or health-related data. As users produce measurements from their mobile devices, voluntary participation becomes essential. However, a number of privacy concerns -- due to the personal information conveyed by data reports -- hinder large-scale deployment of participatory sensing applications. Prior work on privacy protection, for participatory sensing, has often relayed on unrealistic assumptions and with no provably-secure guarantees. The goal of this project is to introduce PEPSI: a Privacy-Enhanced Participatory Sensing Infrastructure. We explore realistic architectural assumptions and a minimal set of (formal) privacy requirements, aiming at protecting privacy of both data producers and consumers. We design a solution that attains privacy guarantees with provable security at very low additional computational cost and almost no extra communication overhead.