907 resultados para Well water
Resumo:
Cyanobacteria are photosynthetic organisms that require the absorption of light for the completion of photosynthesis. Cyanobacteria can use a variety of wavelengths of light within thevisible light spectrum in order to harvest energy for this process. Many species of cyanobacteria have light-harvesting proteins that specialize in the absorption of a small range of wavelengths oflight along the visual light spectrum; others can undergo complementary chromatic adaptation and alter these light-harvesting proteins in order to absorb the wavelengths of light that are mostavailable in a given environment. This variation in light-harvesting phenotype across cyanobacteria leads to the utilization of environmental niches based on light wavelength availability. Furthermore, light attenuation along the water column in an aquatic system also leads to the formation of environmental niches throughout the vertical water column. In order to better understand these niches based on light wavelength availability, we studied the compositionof cyanobacterial genera at the surface and depth of Lake Chillisquaque at three time points throughout the year: September 2009, May 2010, and July 2010. We found that cyanobacterialgenera composition changes throughout the year as well as with physical location in the water column. Additionally, given the light attenuation noted throughout the Lake Chillisquaque, we are able to conclude that light is a major selective factor in the community composition of Lake Chillisquaque.
Resumo:
This paper presents the Alpine Radiometer Intercomparison at the Schneefernerhaus (ARIS), which took place in winter 2009 at the high altitude station at the Zugspitze, Germany (47.42° N, 10.98° E, 2650 m). This campaign was the first direct intercomparison between three new ground based 22 GHz water vapor radiometers for middle atmospheric profiling with the following instruments participating: MIRA 5 (Karlsruhe Institute of Technology), cWASPAM3 (Max Planck Institute for Solar System Research, Katlenburg-Lindau) and MIAWARA-C (Institute of Applied Physics, University of Bern). Even though the three radiometers all measure middle atmospheric water vapor using the same rotational transition line and similar fundamental set-ups, there are major differences between the front ends, the back ends, the calibration concepts and the profile retrieval. The spectrum comparison shows that all three radiometers measure spectra without severe baseline artifacts and that the measurements are in good general agreement. The measurement noise shows good agreement to the values theoretically expected from the radiometer noise formula. At the same time the comparison of the noise levels shows that there is room for instrumental and calibration improvement, emphasizing the importance of low elevation angles for the observation, a low receiver noise temperature and an efficient calibration scheme. The comparisons of the retrieved profiles show that the agreement between the profiles of MIAWARA-C and cWASPAM3 with the ones of MLS is better than 0.3 ppmv (6%) at all altitudes. MIRA 5 has a dry bias of approximately 0.5 ppm (8%) below 0.1 hPa with respect to all other instruments. The profiles of cWASPAM3 and MIAWARA-C could not be directly compared because the vertical region of overlap was too small. The comparison of the time series at different altitude levels show a similar evolution of the H2O volume mixing ratio (VMR) for the ground based instruments as well as the space borne sensor MLS.
Resumo:
The development of the Marcellus Shale gas play in Pennsylvania and the northeastern United States has resulted in significant amounts of water and wastes transported by truck over roadways. This study used geographic information systems (GIS) to quantify truck travel distances via both the preferred routes (minimum distance while also favoring higher-order roads) as well as, where available, the likely actual distances for freshwater and waste transport between pertinent locations (e. g., gas wells, treatment facilities, freshwater sources). Results show that truck travel distances in the Susquehanna River Basin are greater than those used in prior life-cycle assessments of tight shale gas. When compared to likely actual transport distances, if policies were instituted to constrain truck travel to the closest destination and higher-order roads, transport mileage reductions of 40-80% could be realized. Using reasonable assumptions of current practices, greenhouse gas (GHG) emissions associated with water and waste hauling were calculated to be 70-157 MT CO2 eq per gas well. Furthermore, empty so-called backhaul trips, such as to freshwater withdrawal sites or returning from deep well injection sites, were found to increase emissions by an additional 30%, underscoring the importance of including return trips in the analysis. The results should inform future life-cycle assessments of tight shale gases in managed watersheds and help local and regional governments plan for impacts of transportation on local infrastructure. (C) 2013 American Society of Civil Engineers.
Resumo:
The aim of this project was to evaluate the present state and possible changes of water resources in Lake Ladoga and its drainage basin for the purposes of the sustainable development of North-Western Russia and Finland. The group assessed the state of the water resources in quantitative and qualitative terms, taking the system of sustainable development indicators suggested by the International Commission on Sustainable Development as a basis for assessment. These include pressure indicators (annual withdrawals of ground and surface water, domestic consumption of water per capita), state indicators (ground water reserves, concentration of faecalcoliform in fresh water, biochemical oxygen demand), and response indicators (waste-water treatment coverage, density of hydrological networks). The group proposed the following additional indicators and indices for the complex evaluation of the qualitative and quantitative state of the region's water resources: * Pressure indicators (external load, coefficient of anthropogenic pressure) * State indicators and indices (concentrations of chemicals in water, concentrations of chemicals in sediments, index of water pollution, critical load, critical limit, internal load, load/critical load, concentration/critical limit, internal load/external load, trophic state, biotic indicators and indices) * Response indicators (discharges of pure water, polluted water, partly treated water and the ratio between these, trans-boundary fluxes of pollutants, state expenditure on environmental protection, human life span) The assessment considered both temporal and spatial aspects and produced a regional classification of the area according to the index of water pollution. Mathematical models were developed to describe and forecast the processes under way in the lake and can be used to estimate the influence of climatic changes on the hydrological regime, as well as the influence of anthropogenic load on the trophic state of Lake Ladoga and to assess the consequences of accidental discharges of polluting admixtures of different kinds into the lake. The results of this mathematical modelling may be of use to decision-makers responsible for the management of water resources.
Resumo:
MIPAS observations of temperature, water vapor, and ozone in October 2009 as derived with the scientific level-2 processor run by Karlsruhe Institute of Technology (KIT), Institute for Meteorology and Climate Research (IMK) and CSIC, Instituto de Astrofísica de Andalucía (IAA) and retrieved from version 4.67 level-1b data have been compared to co-located field campaign observations obtained during the MOHAVE-2009 campaign at the Table Mountain Facility near Pasadena, California in October 2009. The MIPAS measurements were validated regarding any potential biases of the profiles, and with respect to their precision estimates. The MOHAVE-2009 measurement campaign provided measurements of atmospheric profiles of temperature, water vapor/relative humidity, and ozone from the ground to the mesosphere by a suite of instruments including radiosondes, ozonesondes, frost point hygrometers, lidars, microwave radiometers and Fourier transform infra-red (FTIR) spectrometers. For MIPAS temperatures (version V4O_T_204), no significant bias was detected in the middle stratosphere; between 22 km and the tropopause MIPAS temperatures were found to be biased low by up to 2 K, while below the tropopause, they were found to be too high by the same amount. These findings confirm earlier comparisons of MIPAS temperatures to ECMWF data which revealed similar differences. Above 12 km up to 45 km, MIPAS water vapor (version V4O_H2O_203) is well within 10% of the data of all correlative instruments. The well-known dry bias of MIPAS water vapor above 50 km due to neglect of non-LTE effects in the current retrievals has been confirmed. Some instruments indicate that MIPAS water vapor might be biased high by 20 to 40% around 10 km (or 5 km below the tropopause), but a consistent picture from all comparisons could not be derived. MIPAS ozone (version V4O_O3_202) has a high bias of up to +0.9 ppmv around 37 km which is due to a non-identified continuum like radiance contribution. No further significant biases have been detected. Cross-comparison to co-located observations of other satellite instruments (Aura/MLS, ACE-FTS, AIRS) is provided as well.
Resumo:
The relative abundance of the heavy water isotopologue HDO provides a deeper insight into the atmospheric hydrological cycle. The SCanning Imaging Absorption spectroMeter for Atmospheric CartograpHY (SCIAMACHY) allows for global retrievals of the ratio HDO/H2O in the 2.3 micron wavelength range. However, the spectroscopy of water lines in this region remains a large source of uncertainty for these retrievals. We therefore evaluate and improve the water spectroscopy in the range 4174–4300 cm−1 and test if this reduces systematic uncertainties in the SCIAMACHY retrievals of HDO/H2O. We use a laboratory spectrum of water vapour to fit line intensity, air broadening and wavelength shift parameters. The improved spectroscopy is tested on a series of ground-based high resolution FTS spectra as well as on SCIAMACHY retrievals of H2O and the ratio HDO/H2O. We find that the improved spectroscopy leads to lower residuals in the FTS spectra compared to HITRAN 2008 and Jenouvrier et al. (2007) spectroscopy, and the retrievals become more robust against changes in the retrieval window. For both the FTS and SCIAMACHY measurements, the retrieved total H2O columns decrease by 2–4% and we find a negative shift of the HDO/H2O ratio, which for SCIAMACHY is partly compensated by changes in the retrieval setup and calibration software. The updated SCIAMACHY HDO/H2O product shows somewhat steeper latitudinal and temporal gradients and a steeper Rayleigh distillation curve, strengthening previous conclusions that current isotope-enabled general circulation models underestimate the variability in the near-surface HDO/H2O ratio.
Resumo:
Background Whole-body water immersion leads to a significant shift of blood from the periphery into the intra-thoracic circulation, followed by an increase in central venous pressure and heart volume. In patients with severely reduced left ventricular function, this hydrostatically in-duced volume shift might overstrain the cardiovascular adaptive mechanisms and lead to cardiac decompensation. The aim of this study is to assess the hemodynamic response to water immer-sion, gymnastics and swimming in patients with heart failure (CHF). Methods We examined 10 patients with compensated CHF (62.9 +/- 6.3 years, EF 31.5 +/- 4.1%, peak VO2 19.4 +/- 2.8 ml/kg/min.), 10 patients with coronary artery disease (CAD) but preserved left ventricular function (57.2 +/- 5.6 years, EF 63.9 +/- 5.5%, peak VO2 28.0 +/- 6.3 ml/kg/min.) and 10 healthy subjects (32.8 +/- 7.2 years, peak VO2 45.6 +/- 6.0 ml/kg/min.). Hemodynamic response to thermo-neutral (32 degrees C) water immersion and exercise was measured using a non-invasive foreign gas rebreathing method during stepwise water immersion, water gymnastics and swimming. Results Water immersion up to the chest increased cardiac index by 19% in healthy subjects, by 21% in CAD patients and 16% in CHF patients. While some CHF patients showed a decrease of stroke volume during immersion, all subjects were able to increase cardiac index (by 87% in healthy subjects, 77% in CAD patients and 53% in CHF patients). Oxygen uptake during swim-ming was 9.7 +/- 3.3 ml/kg/min. in CHF patients, 12.4 +/- 3.5 ml/kg/min. in CAD patients and 13.9 +/- 4.0 ml/kg/min. in healthy subjects. Conclusions Patients with severely reduced left ventricular function but stable clinical conditions and a minimal peak VO2 of at least 15 ml/kg/min. during a symptom-limited exercise stress test tolerate water immersion and swimming in thermo-neutral water well. Although cardiac in-dex and oxygen uptake are lower compared with CAD patients with preserved left ventricular function and healthy controls, these patients are able to increase cardiac index adequately during water immersion and swimming.
Resumo:
There is a missing link between tree physiological and wood-anatomical knowledge which makes it impossible mechanistically to explain and predict the radial growth of individual trees from climate data. Empirical data of microclimatic factors, intra-annual growth rates, and tree-specific ratios between actual and potential transpiration (T PET−1) of trees of three species (Quercus pubescens, Pinus sylvestris, and Picea abies) at two dry sites in the central Wallis, Switzerland, were recorded from 2002 to 2004 at a 10 min resolution. This included the exceptionally hot and dry summer of 2003. These data were analysed in terms of direct (current conditions) and indirect impacts (predispositions of the past year) on growth. Rain was found to be the only factor which, to a large extent, consistently explained the radial increment for all three tree species at both sites and in the short term as well. Other factors had some explanatory power on the seasonal time-scale only. Quercus pubescens built up much of its tree ring before bud break. Pinus sylvestris and Picea abies started radial growth 1–2 weeks after Quercus pubescens and this was despite the fact that they had a high T PET−1 before budburst and radial growth started. A high T PET−1 was assumed to be related to open stomata, a very high net CO2 assimilation rate, and thus a potential carbon (C)-income for the tree. The main period of radial growth covered about 30–70% of the productive days of a year. In terms of C-allocation, these results mean that Quercus pubescens depended entirely on internal C-stores in the early phase of radial growth and that for all three species there was a long time period of C-assimilation which was not used for radial growth in above-ground wood. The results further suggest a strong dependence of radial growth on the current tree water relations and only secondarily on the C-balance. A concept is discussed which links radial growth over a feedback loop to actual tree water-relations and long-term affected C-storage to microclimate.
Resumo:
‘where the land is greener’ looks at soil and water conservation from a global perspective. In total, 42 soil and water conservation technologies and 28 approaches are described – each fully illustrated with photographs, graphs and line drawings – as applied in case studies in more than 20 countries around the world. This unique presentation of case studies draws on WOCAT’s extensive database, gathered in over 12 years of field experience. The book is intended as a prototype for national and regional compilations of sustainable land management practices a practical – instrument for making field knowledge available to decision makers. Various land use categories are covered, from crop farming to grazing and forestry. The technologies presented range from terrace-building to agroforestry systems; from rehabilitation of common pastures to conservation agriculture; from Vermiculture to water harvesting. Several of these technologies are already well-established successes – others are innovative, relatively unknown, but full of promise. Descriptions of the various technologies are complemented by studies of the ‘approaches’ that have underpinned their development and dissemination. Some of these approaches were developed specifically for individual projects; others developed and spread spontaneously in fascinating processes that offer a new perspective for development policy. In addition to the case studies, the book includes two analytical sections on the technologies and approaches under study. By identifying common elements of success, these analyses offer hope for productive conservation efforts at the local level with simultaneous global environmental benefits. Policy pointers for decision makers and donors offer a new impetus for further investment – to make the land greener.
Resumo:
The Environmental Health (EH) program of Peace Corps (PC) Panama and a non-governmental organization (NGO) Waterlines have been assisting rural communities in Panama gain access to improved water sources through the practice of community management (CM) model and participatory development. Unfortunately, there is little information available on how a water system is functioning once the construction is complete and the volunteer leaves the community. This is a concern when the recent literature suggests that most communities are not able to indefinitely maintain a rural water system (RWS) without some form of external assistance (Sara and Katz, 1997; Newman et al, 2002; Lockwood, 2002, 2003, 2004; IRC, 2003; Schweitzer, 2009). Recognizing this concern, the EH program director encouraged the author to complete a postproject assessment of the past EH water projects. In order to carry out the investigation, an easy to use monitoring and evaluation tool was developed based on literature review and the author’s three years of field experience in rural Panama. The study methodology consists of benchmark scoring systems to rate the following ten indicators: watershed, source capture, transmission line, storage tank, distribution system, system reliability, willingness to pay, accounting/transparency, maintenance, and active water committee members. The assessment of 28 communities across the country revealed that the current state of physical infrastructure, as well as the financial, managerial and technical capabilities of water committees varied significantly depending on the community. While some communities are enjoying continued service and their water committee completing all of its responsibilities, others have seen their water systems fall apart and be abandoned. Overall, the higher score were more prevalent for all ten indicators. However, even the communities with the highest scores requested some form of additional assistance. The conclusion from the assessment suggests that the EH program should incorporate an institutional support mechanism (ISM) to its sector policy in order to systematically provide follow-up support to rural communities in Panama. A full-time circuit rider with flexible funding would be able to provide additional technical support, training and encouragement to those communities in need.
Resumo:
For countless communities around the world, acquiring access to safe drinking water is a daily challenge which many organizations endeavor to meet. The villages in the interior of Suriname have been the focus of many improved drinking water projects as most communities are without year-round access. Unfortunately, as many as 75% of the systems in Suriname fail within several years of implementation. These communities, scattered along the rivers and throughout the jungle, lack many of the resources required to sustain a centralized water treatment system. However, the centralized system in the village of Bendekonde on the Upper Suriname River has been operational for over 10 years and is often touted by other communities. The Bendekonde system is praised even though the technology does not differ significantly from other failed systems. Many of the water systems that fail in the interior fail due to a lack of resources available to the community to maintain the system. Typically, the more complex a system becomes, so does the demand for additional resources. Alternatives to centralized systems include technologies such as point-of-use water filters, which can greatly reduce the necessity for outside resources. In particular, ceramic point-of-use water filters offer a technology that can be reasonably managed in a low resource setting such as that in the interior of Suriname. This report investigates the appropriateness and effectiveness of ceramic filters constructed with local Suriname clay and compares the treatment effectiveness to that of the Bendekonde system. Results of this study showed that functional filters could be produced from Surinamese clay and that they were more effective, in a controlled laboratory setting, than the field performance of the Bendekonde system for removing total coliform. However, the Bendekonde system was more successful at removing E. coli. In a life-cycle assessment, ceramic water filters manufactured in Suriname and used in homes for a lifespan of 2 years were shown to have lower cumulative energy demand, as well as lower global warming potential than a centralized system similar to that used in Bendekonde.
Resumo:
The lack of access to sufficient water and sanitation facilities is one of the largest hindrances towards the sustainable development of the poorest 2.2 billion people in the world. Rural Uganda is one of the areas where such inaccessibility is seriously hampering their efforts at development. Many rural Ugandans must travel several kilometers to fetch adequate water and many still do not have adequate sanitation facilities. Such poor access to clean water forces Ugandans to spend an inordinate amount of time and energy collecting water - time and energy that could be used for more useful endeavors. Furthermore, the difficulty in getting water means that people use less water than they need to for optimal health and well-being. Access to other sanitation facilities can also have a large impact, particularly on the health of young children and the elderly whose immune systems are less than optimal. Hand-washing, presence of a sanitary latrine, general household cleanliness, maintenance of the safe water chain and the households’ knowledge about and adherence to sound sanitation practices may be as important as access to clean water sources. This report investigates these problems using the results from two different studies. It first looks into how access to water affects peoples’ use of it. In particular it investigates how much water households use as a function of perceived effort to fetch it. Operationally, this was accomplished by surveying nearly 1,500 residents in three different districts around Uganda about their water usage and the time and distance they must travel to fetch it. The study found that there is no statistically significant correlation between a family’s water usage and the perceived effort they must put forth to have to fetch it. On average, people use around 15 liters per person per day. Rural Ugandan residents apparently require a certain amount of water and will travel as far or as long as necessary to collect it. Secondly, a study entitled “What Works Best in Diarrheal Disease Prevention?” was carried out to study the effectiveness of five different water and sanitation facilities in reducing diarrheal disease incidences amongst children under five. It did this by surveying five different communities before and after the implementation of improvements to find changes in diarrheal disease incidences amongst children under five years of age. It found that household water treatment devices provide the best means of preventing diarrheal diseases. This is likely because water often becomes contaminated before it is consumed even if it was collected from a protected source.
Resumo:
As water quality interventions are scaled up to meet the Millennium Development Goal of halving the proportion of the population without access to safe drinking water by 2015 there has been much discussion on the merits of household- and source-level interventions. This study furthers the discussion by examining specific interventions through the use of embodied human and material energy. Embodied energy quantifies the total energy required to produce and use an intervention, including all upstream energy transactions. This model uses material quantities and prices to calculate embodied energy using national economic input/output-based models from China, the United States and Mali. Embodied energy is a measure of aggregate environmental impacts of the interventions. Human energy quantifies the caloric expenditure associated with the installation and operation of an intervention is calculated using the physical activity ratios (PARs) and basal metabolic rates (BMRs). Human energy is a measure of aggregate social impacts of an intervention. A total of four household treatment interventions – biosand filtration, chlorination, ceramic filtration and boiling – and four water source-level interventions – an improved well, a rope pump, a hand pump and a solar pump – are evaluated in the context of Mali, West Africa. Source-level interventions slightly out-perform household-level interventions in terms of having less total embodied energy. Human energy, typically assumed to be a negligible portion of total embodied energy, is shown to be significant to all eight interventions, and contributing over half of total embodied energy in four of the interventions. Traditional gender roles in Mali dictate the types of work performed by men and women. When the human energy is disaggregated by gender, it is seen that women perform over 99% of the work associated with seven of the eight interventions. This has profound implications for gender equality in the context of water quality interventions, and may justify investment in interventions that reduce human energy burdens.
Resumo:
In the Dominican Republic economic growth in the past twenty years has not yielded sufficient improvement in access to drinking water services, especially in rural areas where 1.5 million people do not have access to an improved water source (WHO, 2006). Worldwide, strategic development planning in the rural water sector has focused on participatory processes and the use of demand filters to ensure that service levels match community commitment to post-project operation and maintenance. However studies have concluded that an alarmingly high percentage of drinking water systems (20-50%) do not provide service at the design levels and/or fail altogether (up to 90%): BNWP (2009), Annis (2006), and Reents (2003). World Bank, USAID, NGOs, and private consultants have invested significant resources in an effort to determine what components make up an “enabling environment” for sustainable community management of rural water systems (RWS). Research has identified an array of critical factors, internal and external to the community, which affect long term sustainability of water services. Different frameworks have been proposed in order to better understand the linkages between individual factors and sustainability of service. This research proposes a Sustainability Analysis Tool to evaluate the sustainability of RWS, adapted from previous relevant work in the field to reflect the realities in the Dominican Republic. It can be used as a diagnostic tool for government entities and development organizations to characterize the needs of specific communities and identify weaknesses in existing training regimes or support mechanisms. The framework utilizes eight indicators in three categories (Organization/Management, Financial Administration, and Technical Service). Nineteen independent variables are measured resulting in a score of sustainability likely (SL), possible (SP), or unlikely (SU) for each of the eight indicators. Thresholds are based upon benchmarks from the DR and around the world, primary data collected during the research, and the author’s 32 months of field experience. A final sustainability score is calculated using weighting factors for each indicator, derived from Lockwood (2003). The framework was tested using a statistically representative geographically stratified random sample of 61 water systems built in the DR by initiatives of the National Institute of Potable Water (INAPA) and Peace Corps. The results concluded that 23% of sample systems are likely to be sustainable in the long term, 59% are possibly sustainable, and for 18% it is unlikely that the community will be able to overcome any significant challenge. Communities that were scored as unlikely sustainable perform poorly in participation, financial durability, and governance while the highest scores were for system function and repair service. The Sustainability Analysis Tool results are verified by INAPA and PC reports, evaluations, and database information, as well as, field observations and primary data collected during the surveys. Future research will analyze the nature and magnitude of relationships between key factors and the sustainability score defined by the tool. Factors include: gender participation, legal status of water committees, plumber/operator remuneration, demand responsiveness, post construction support methodologies, and project design criteria.
Resumo:
Peru is a developing country with abundant fresh water resources, yet the lack of infrastructure leaves much of the population without access to safe water for domestic uses. The author of this report was a Peace Corps Volunteer in the sector of water & sanitation in the district of Independencia, Ica, Peru. Independencia is located in the arid coastal region of the country, receiving on average 15 mm of rain annually. The water source for this district comes from the Pisco River, originating in the Andean highlands and outflowing into the Pacific Ocean near the town of Pisco, Peru. The objectives of this report are to assess the water supply and sanitation practices, model the existing water distribution system, and make recommendations for future expansion of the distribution system in the district of Independencia, Peru. The assessment of water supply will be based on the results from community surveys done in the district of Independencia, water quality testing done by a detachment of the U.S. Navy, as well as on the results of a hydraulic model built in EPANET 2.0 to represent the distribution system. Sanitation practice assessments will be based on the surveys as well as observations from the author while living in Peru. Recommendations for system expansions will be made based on results from the EPANET model and the municipality’s technical report for the existing distribution system. Household water use and sanitation surveys were conducted with 84 families in the district revealing that upwards of 85% store their domestic water in regularly washed containers with lids. Over 80% of those surveyed are drinking water that is treated, mostly boiled. Of those surveyed, over 95% reported washing their hands and over 60% mentioned at least one critical time for hand washing when asked for specific instances. From the surveys, it was also discovered that over 80% of houses are properly disposing of excrement, in either latrines or septic tanks. There were 43 families interviewed with children five years of age or under, and just over 18% reported the child had a case of diarrhea within the last month at the time of the interview. Finally, from the surveys it was calculated that the average water use per person per day is about 22 liters. Water quality testing carried out by a detachment of the U.S. Navy revealed that the water intended for consumption in the houses surveyed was not suitable for consumption, with a median E. coli most probable number of 47/100 ml for the 61 houses sampled. The median total coliforms was 3,000 colony forming units per 100 ml. EPANET was used to simulate the water delivery system and evaluate its performance. EPANET is designed for continuous water delivery systems, assuming all pipes are always flowing full. To account for the intermittent nature of the system, multiple EPANET network models were created to simulate how water is routed to the different parts of the system throughout the day. The models were created from interviews with the water technicians and a map of the system created using handheld GPS units. The purpose is to analyze the performance of the water system that services approximately 13,276 people in the district of Independencia, Peru, as well as provide recommendations for future growth and improvement of the service level. Performance evaluation of the existing system is based on meeting 25 liters per person per day while maintaining positive pressure at all nodes in the network. The future performance is based on meeting a minimum pressure of 20 psi in the main line, as proposed by Chase (2000). The EPANET model results yield an average nodal pressure for all communities of 71 psi, with a range from 1.3 – 160 psi. Thus, if the current water delivery schedule obtained from the local municipality is followed, all communities should have sufficient pressure to deliver 25 l/p/d, with the exception of Los Rosales, which can only supply 3.25 l/p/d. However, if the line to Los Rosales were increased from one to four inches, the system could supply this community with 25 l/p/d. The district of Independencia could greatly benefit from increasing the service level to 24-hour water delivery and a minimum of 50 l/p/d, so that communities without reliable access due to insufficient pressure would become equal beneficiaries of this invaluable resource. To evaluate the feasibility of this, EPANET was used to model the system with a range of population growth rates, system lifetimes, and demands. In order to meet a minimum pressure of 20 psi in the main line, the 6-inch diameter main line must be increased and approximately two miles of trench must be excavated up to 30 feet deep. The sections of the main line that must be excavated are mile 0-1 and 1.5-2.5, and the first 3.4 miles of the main line must be increased from 6 to 16 inches, contracting to 10 inches for the remaining 5.8 miles. Doing this would allow 24-hour water delivery and provide 50 l/p/d for a range of population growth rates and system lifetimes. It is expected that improving the water delivery service would reduce the morbidity and mortality from diarrheal diseases by decreasing the recontamination of the water due to transport and household storage, as well as by maintaining continuous pressure in the system to prevent infiltration of contaminated groundwater. However, this expansion must be carefully planned so as not to affect aquatic ecosystems or other districts utilizing water from the Pisco River. It is recommended that stream gaging of the Pisco River and precipitation monitoring of the surrounding watershed is initiated in order to begin a hydrological study that would be integrated into the district’s water resource planning. It is also recommended that the district begin routine water quality testing, with the results available to the public.