974 resultados para Webless Migratory Game Bird Research Program (U.S.)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

An experimental study on the angular distribution and conversion of multi-keV X-ray sources produced from 2 ns-duration 527nm laser irradiated thick-foil targets on Shenguang II laser facility (SG-II) is reported. The angular distributions measured in front of the targets can be fitted with the function of f(theta) = alpha+ (1- alpha)cos(beta) theta (theta is the viewing angle relative to the target normal), where alpha = 0.41 +/- 0.014, beta = 0.77 +/- 0.04 for Ti K-shell X-ray Sources (similar to 4.75 keV for Ti K-shell), and alpha = 0.085 +/- 0.06, beta = 0.59 +/- 0.07 for Ag/Pd/Mo L-shell X-ray Sources (2-2.8 keV for Mo L-shell, 2.8-3.5 keV for Pd L-shell, and 3-3.8 keV for Ag L-shell). The isotropy of the angular-distribution of L-shell emission is worse than that of the K-shell emission at larger viewing angle (>70 degrees), due to its larger optical depth (stronger self-absorption) in the cold plasma side lobe Surrounding the central emission region, and in the central hot plasma region (emission region). There is no observable difference in the angular distributions of the L-shell X-ray emission among Ag, Pd, and Mo. The conversion efficiency of Ag/Pd/Mo L-shell X-ray sources is higher than that of the Ti K-shell X-ray sources, but the gain relative to the K-shell emission is not as high as that by using short pulse lasers. The conversion efficiency of the L-shell X-ray sources decrease, with increasing atomic numbers (or X-ray photon energy), similar to the behavior of the K-shell X-ray Source.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report on the conversion of near-ultraviolet radiation of 250-350 nm into near-infrared emission of 970-1100 nm in Yb3+-doped transparent glass ceramics containing Ba2TiSi2O8 nanocrystals due to the energy transfer from the silicon-oxygen-related defects to Yb3+ ions. Efficient Yb3+ emission (F-2(5/2)-> F-2(7/2)) was detected under the excitation of defects absorption at 314 nm. The occurrence of energy transfer is proven by both steady state and time-resolved emission spectra, respectively, at 15 K. The Yb2O3 concentration dependent energy transfer efficiency has also been evaluated, and the maximum value is 65% for 8 mol % Yb2O3 doped glass ceramic. These materials are promising for the enhancement of photovoltaic conversion efficiency of silicon solar cells via spectra modification.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

By solving numerically the full Maxwell-Bloch equations without the slowly varying envelope approximation and the rotating-wave approximation, we investigate the effects of Lorentz local field correction (LFC) on the propagation properties of few-cycle laser pulse in a dense A-type three-level atomic medium. We find that: when the area of the input pulse is larger, split of pulse occurs and the number of the sub-pulses with LFC is larger than that without LFC; at the same distance, the time interval between the first sub-pulse and the second sub-pulse in the case without LFC is longer than that with LFC, the time of pulse appearing in the case without LFC is later than that in the case with LFC, and the two phenomena are more obvious with propagation distance increasing; time evolution rules of the populations of levels vertical bar 1 >, vertical bar 2 > and vertical bar 3 > in the two cases with and without LFC are much different. When the area of the input pulse is smaller, effects of LFC on time evolutions of the pulse and populations are remarkably smaller than those in the case of larger area pulse. (c) 2008 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conical emission (CE) has been investigated experimentally by laser pulses with different pulse durations and spectral bandwidths. The results show that the overall CE curve will shift as the varying of spectral bandwidth of pump laser pulse. But for pump laser pulses which have same spectral bandwidth but different pulse duration, the CE angles will be same at the spectral region close to the pump wavelength while will be different at the spectral region far away from the pump wavelength. We have also fitted the measured CE angles with X-wave model. The calculated curves and the measured CE curves match reasonably well. The best fits indicate that the group velocity of the filament pulse may be greatly controlled by controlling the spectral bandwidth of pump laser pulse. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The influence of the carrier-envelope phase (CEP) of the driving laser pulse on the generation of single attosecond (as) pulses from surface harmonics by using the polarization gating technique is investigated in detail. It is found that the modulation depth of the high-order harmonic spectrum depends on the CEP, and a strong single 68 as pulse can be generated when the CEP is stable and has the proper value. The physical origin of the influence of the CEP is explained in terms of the oscillating mirror model. (C) 2008 American Institute of Physics. [DOI: 10.1063/1.2997342]

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigate high-order harmonic emission and isolated attosecond pulse (IAP) generation in atoms driven by a two-colour multi-cycle laser field consisting of an 800 nm pulse and an infrared laser pulse at an arbitrary wavelength. With moderate laser intensity, an IAP of similar to 220 as can be generated in helium atoms by using two-colour laser pulses of 35 fs/800 nm and 46 fs/1150 nm. The discussion based on the three-step semiclassical model, and time-frequency analysis shows a clear picture of the high-order harmonic generation in the waveform-controlled laser field which is of benefit to the generation of XUV IAP and attosecond electron pulses. When the propagation effect is included, the duration of the IAP can be shorter than 200 as, when the driving laser pulses are focused 1 mm before the gas medium with a length between 1.5 mm and 2 mm.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We describe the fabrication of a Mach-Zehnder optical modulator in LiNbO3 by femtosecond laser micormachining, which is composed of optical waveguides inscripted by a femtosecond laser and embedded microelectrodes subsequently using femtosecond laser ablation and selective electroless plating. A half-wave voltage close to 19 V is achieved at a wavelength of 632.8 nm with an interaction length of 2.6 mm. This simple and cost-effective technique opens up new opportunities for fabricating integrated electro-optic devices. (C) 2008 Optical Society of America

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a novel technique to fabricate deeply embedded microelectrodes in LiNbO3 using femtosecond pulsed laser ablation and selective electroless plating. The fabrication process mainly consists of four steps, which are (1) micromachining of microgrooves on the surface of LiNbO3 by femtosecond laser ablation; (2) formation of AgNO3 films on substrates; (3) scanning the femtosecond laser beam in the fabricated microgrooves for modi. cation of the inner surfaces; and (4) electroless copper plating. The void-free electroless copper plating is obtained with appropriate cross section of microgrooves and uniform initiation of the autocatalytic deposition on the inner surface of grooves. The dimension and shape of the microelectrodes could be accurately controlled by changing the conditions of femtosecond laser ablation, which in turn can control the distribution of electric field inside LiNbO3 crystal for various applications, opening up a new approach to fabricate three-dimensional integrated electro-optic devices. (C) 2008 Elsevier B. V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We experimentally observe the formation of X-waves at fundamental, third harmonic, and fifth harmonic wavelengths by infrared (central wavelength at similar to 1500 nm) femtosecond laser pulse filamentation in air. By fitting the angularly resolved spectra of the fundamental and harmonic waves using X-wave relations, we confirm that all the X-waves have nearly the same group velocity, indicating that they are locked in space and time during their propagation in filament.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A novel scheme to eliminate the artificial background phase jitter is proposed for measuring the carrier-envelope phase drift of tunable infrared femtosecond pulses from an OPA laser. Different from previous methods, a reference spectral interference measurement is performed, which reveals the artificial phase jitter in the measurement process, in addition to the normal f-to-2f interference measurement between the incident laser pulses and it second harmonic. By analyzing the interference fringes, the accurate CEP fluctuation of the incident pulses is obtained. (c) 2008 Optical Society of America

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Confinement of electromagnetic energy into a single well-controlled oscillation of light is very important for generation of intense supercontinuum radiation. We find that the pulse breakup of few-cycle ultrashort laser pulses via resonant propagation effects can achieve this aim. By extracting such pulses and then focusing them to drive the He atoms, about 200 eV intense supercontinuum radiation can be generated, which is capable of supporting similar to 20 attosecond isolated pulse generation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ion acceleration by ultrashort circularly polarized laser pulse in a solid-density target is investigated using two-dimensional particle-in-cell simulation. The ions are accelerated and compressed by the continuously extending space-charge field created by the evacuation and compression of the target electrons by the laser light pressure. For a sufficiently thin target, the accelerated and compressed ions can reach and exit from the rear surface as a high-density high-energy ion bunch. The peak ion energy depends on the target thickness and reaches maximum when the compressed ion layer can just reach the rear target surface. The compressed ion layer exhibits lateral striation which can be suppressed by using a sharp-rising laser pulse. (c) 2008 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ultrashort light-matter interactions between a linear chirped pulse and a biased semiconductor thin film GaAs are investigated. Using different chirped pulses, the dependence of infrared spectra on chirp rate is demonstrated for a 5 fs pulse. It is found that the infrared spectra can be controlled by the linear chirp of the pulse. Furthermore, the infrared spectral intensity could be enhanced by two orders of magnitude via appropriately choosing values of the linear chirp rates. Our results suggest a possible scheme to control the infrared signal.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Using conventional methods, a laser pulse can be focused down to around 6-8 mu m, but further reduction of the spot size has proven to be difficult. Here it is shown by particle-in-cell simulation that with a hollow cone an intense laser pulse can be reduced to a tiny, highly localized, spot of around 1 mu m radius, accompanied by much enhanced light intensity. The pulse shaping and focusing effect is due to a nonlinear laser-plasma interaction on the inner surface of the cone. When a thin foil is attached to the tip of the cone, the cone-focused light pulse compresses and accelerates the ions in its path and can punch through the thin target, creating highly localized energetic ion bunches of high density.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigate the nonlinear propagation of ultrashort pulses on resonant intersubband transitions in multiple semiconductor quantum wells. It is shown that the nonlinearity rooted from electron-electron interactions destroys the condition giving rise to self-induced transparency. However, by adjusting the area of input pulse, we find the signatures of self-induced transmission due to a full Rabi flopping of the electron density, and this phenomenon can be approximately interpreted by the traditional standard area theorem via defining the effective area of input pulse.