942 resultados para Weather simulations
Resumo:
The intraseasonal variability (ISV) of the Indian summer monsoon is dominated by a 30–50 day oscillation between “active” and “break” events of enhanced and reduced rainfall over the subcontinent, respectively. These organized convective events form in the equatorial Indian Ocean and propagate north to India. Atmosphere–ocean coupled processes are thought to play a key role the intensity and propagation of these events. A high-resolution, coupled atmosphere–mixed-layer-oceanmodel is assembled: HadKPP. HadKPP comprises the Hadley Centre Atmospheric Model (HadAM3) and the K Profile Parameterization (KPP) mixed-layer ocean model. Following studies that upper-ocean vertical resolution and sub-diurnal coupling frequencies improve the simulation of ISV in SSTs, KPP is run at 1 m vertical resolution near the surface; the atmosphere and ocean are coupled every three hours. HadKPP accurately simulates the 30–50 day ISV in rainfall and SSTs over India and the Bay of Bengal, respectively, but suffers from low ISV on the equator. This is due to the HadAM3 convection scheme producing limited ISV in surface fluxes. HadKPP demonstrates little of the observed northward propagation of intraseasonal events, producing instead a standing oscillation. The lack of equatorial ISV in convection in HadAM3 constrains the ability of KPP to produce equatorial SST anomalies, which further weakens the ISV of convection. It is concluded that while atmosphere–ocean interactions are undoubtedly essential to an accurate simulation of ISV, they are not a panacea for model deficiencies. In regions where the atmospheric forcing is adequate, such as the Bay of Bengal, KPP produces SST anomalies that are comparable to the Tropical Rainfall Measuring Mission Microwave Imager (TMI) SST analyses in both their magnitude and their timing with respect to rainfall anomalies over India. HadKPP also displays a much-improved phase relationship between rainfall and SSTs over a HadAM3 ensemble forced by observed SSTs, when both are compared to observations. Coupling to mixed-layer models such as KPP has the potential to improve operational predictions of ISV, particularly when the persistence time of SST anomalies is shorter than the forecast lead time.
Resumo:
Recent radar and rain-gauge observations from the island of Dominica, which lies in the eastern Caribbean sea at 15 N, show a strong orographic enhancement of trade-wind precipitation. The mechanisms behind this enhancement are investigated using idealized large-eddy simulations with a realistic representation of the shallow trade-wind cumuli over the open ocean upstream of the island. The dominant mechanism is found to be the rapid growth of convection by the bulk lifting of the inhomogenous impinging flow. When rapidly lifted by the terrain, existing clouds and other moist parcels gain buoyancy relative to rising dry air because of their different adiabatic lapse rates. The resulting energetic, closely-packed convection forms precipitation readily and brings frequent heavy showers to the high terrain. Despite this strong precipitation enhancement, only a small fraction (1%) of the impinging moisture flux is lost over the island. However, an extensive rain shadow forms to the lee of Dominica due to the convective stabilization, forced descent, and wave breaking. A linear model is developed to explain the convective enhancement over the steep terrain.
Resumo:
The “butterfly effect” is a popularly known paradigm; commonly it is said that when a butterfly flaps its wings in Brazil, it may cause a tornado in Texas. This essentially describes how weather forecasts can be extremely senstive to small changes in the given atmospheric data, or initial conditions, used in computer model simulations. In 1961 Edward Lorenz found, when running a weather model, that small changes in the initial conditions given to the model can, over time, lead to entriely different forecasts (Lorenz, 1963). This discovery highlights one of the major challenges in modern weather forecasting; that is to provide the computer model with the most accurately specified initial conditions possible. A process known as data assimilation seeks to minimize the errors in the given initial conditions and was, in 1911, described by Bjerkness as “the ultimate problem in meteorology” (Bjerkness, 1911).
Resumo:
The extent to which the four-dimensional variational data assimilation (4DVAR) is able to use information about the time evolution of the atmosphere to infer the vertical spatial structure of baroclinic weather systems is investigated. The singular value decomposition (SVD) of the 4DVAR observability matrix is introduced as a novel technique to examine the spatial structure of analysis increments. Specific results are illustrated using 4DVAR analyses and SVD within an idealized 2D Eady model setting. Three different aspects are investigated. The first aspect considers correcting errors that result in normal-mode growth or decay. The results show that 4DVAR performs well at correcting growing errors but not decaying errors. Although it is possible for 4DVAR to correct decaying errors, the assimilation of observations can be detrimental to a forecast because 4DVAR is likely to add growing errors instead of correcting decaying errors. The second aspect shows that the singular values of the observability matrix are a useful tool to identify the optimal spatial and temporal locations for the observations. The results show that the ability to extract the time-evolution information can be maximized by placing the observations far apart in time. The third aspect considers correcting errors that result in nonmodal rapid growth. 4DVAR is able to use the model dynamics to infer some of the vertical structure. However, the specification of the case-dependent background error variances plays a crucial role.