947 resultados para Wave-wave interaction
Resumo:
Recent experimental and theoretical advances in the creation and description of bright matter wave solitons are reviewed. Several aspects are taken into account, including the physics of soliton train formation as the nonlinear Fresnel diffraction, soliton-soliton interactions, and propagation in the presence of inhomogeneities. The generation of stable bright solitons by means of Feshbach resonance techniques is also discussed. © World Scientific Publishing Company.
Resumo:
The objective of the present study was to characterize ovarian follicular dynamics and hormone concentrations during follicular deviation in the first wave after ovulation in Nelore (Bos indicus) heifers. Ultrasonographic exams were performed and blood samples were collected every 12 h from the day of estrus until 120-144 h after ovulation in seven females. Deviation was defined as the point at which the growth rate of the dominant follicle became greater than the growth rate of the largest subordinate follicle. Deviation occurred approximately 65 h after ovulation. Growth rate of the dominant follicle increased (P < 0.05) after deviation, while growth rate of the subordinate follicle decreased (P < 0.05). Diameter of the dominant follicle did not differ from the subordinate follicle at deviation (approximately 5.4 mm). The dominant follicle (7.6 mm) was larger (P < 0.05) than the subordinate follicle (5.3 mm) 96 h after ovulation or 24 h after deviation. Plasma FSH concentrations did not change significantly during the post-ovulatory period. The first significant increase in mean plasma progesterone concentration occurred on the day of follicular deviation. In conclusion, the interval from ovulation to follicular deviation (2.7 days) was similar to that previously reported in B. taurus females, but follicles were smaller. Diameters of the dominant follicle and subordinate follicle did not differ before deviation and deviation was characterized by an increase in dominant follicle and decrease in subordinate follicle growth rate. Variations in FSH concentrations within 12-h intervals were not involved in follicular deviation in Nelore heifers. © 2006 Elsevier B.V. All rights reserved.
Resumo:
We present results on the the influence of changes in the masses and sizes of D mesons and nucleons on elastic DN scattering cross sections and phase shifts in a hadronic medium composed of confined quarks in nucleons. We evaluate the changes of the hadronic masses due to changes of the light constituent quarks at finite baryon density using a chiral quark model based on Coulomb gauge QCD. The model contains a confining Coulomb potential and a transverse hyperfine interaction consistent with a finite gluon propagator in the infrared. We present results for the total cross section and the s-wave phase shift at low energies for isospin I=1-for I=0 and other partial waves the results are similar.
Resumo:
A challenge in mesonic three-body decays of heavy mesons is to quantify the contribution of re-scattering between the final mesons. D decays have the unique feature that make them a key to light meson spectroscopy, in particular to access the Kn S-wave phase-shifts. We built a relativis-tic three-body model for the final state interaction in D+ → K -π+π+ decay based on the ladder approximation of the Bethe-Salpeter equation projected on the light-front. The decay amplitude is separated in a smooth term, given by the direct partonic decay amplitude, and a three-body fully interacting contribution, that is factorized in the standard two-meson resonant amplitude times a reduced complex amplitude that carries the effect of the three-body rescattering mechanism. The off-shell reduced amplitude is a solution of an inhomogeneous Faddeev type three-dimensional integral equation, that includes only isospin 1/2 K -π+ interaction in the S-wave channel. The elastic K-π+ scattering amplitude is parameterized according to the LASS data[1]. The integral equation is solved numerically and preliminary results are presented and compared to the experimental data from the E791 Collaboration[2, 3] and FOCUS Collaboration[4, 5].
Resumo:
A model of the DN interaction is presented which is developed in close analogy to the meson-exchange KN potential of the Jülich group utilizing SU(4) symmetry constraints. The main ingredients of the interaction are provided by vector meson (ρ, ω) exchange and higher-order box diagrams involving D *N, DΔ, and D *Δ intermediate states. The coupling of DN to the π Λ c and π Σ c channels is taken into account. The interaction model generates the Λ c(2595)-resonance dynamically as a DN quasi-bound state. Results for DN total and differential cross sections are presented and compared with predictions of two interaction models that are based on the leading-order Weinberg-Tomozawa term. Some features of the Λ c(2595)-resonance are discussed and the role of the near-by π Σ c threshold is emphasized. Selected predictions of the orginal KN model are reported too. Specifically, it is pointed out that the model generates two poles in the partial wave corresponding to the Λ(1405)-resonance. © 2011 SIF, Springer-Verlag Berlin Heidelberg.
Resumo:
In the present work we use an asymptotic approach to obtain the long wave equations. The shallow water equation is put as a function of an external parameter that is a measure of both the spatial scales anisotropy and the fast to slow time ratio. The values given to the external parameters are consistent with those computed using typical values of the perturbations in tropical dynamics. Asymptotically, the model converge toward the long wave model. Thus, it is possible to go toward the long wave approximation through intermediate realizable states. With this approach, the resonant nonlinear wave interactions are studied. To simplify, the reduced dynamics of a single resonant triad is used for some selected equatorial trios. It was verified by both theoretical and numerical results that the nonlinear energy exchange period increases smoothly as we move toward the long wave approach. The magnitude of the energy exchanges is also modified, but in this case depends on the particular triad used and also on the initial energy partition among the triad components. Some implications of the results for the tropical dynamics are disccussed. In particular, we discuss the implications of the results for El Nĩo and the Madden-Julian in connection with other scales of time and spatial variability. © Published under licence by IOP Publishing Ltd.
Resumo:
The deuteron binding energy and wave function are calculated by using the recently developed three-dimensional form of low-momentum nucleon-nucleon (NN) interaction. The homogeneous Lippmann-Schwinger equation is solved in momentum space by using the low-momentum two-body interaction, which is constructed from Malfliet-Tjon potential. The results for both, deuteron binding energy and wave function, obtained with low-momentum interaction, are compared with the corresponding results obtained with bare potential. © 2012 Springer-Verlag.
Resumo:
Riemann surfaces, cohomology and homology groups, Cartan's spinors and triality, octonionic projective geometry, are all well supported by Complex Structures [1], [2], [3], [4]. Furthermore, in Theoretical Physics, mainly in General Relativity, Supersymmetry and Particle Physics, Complex Theory Plays a Key Role [5], [6], [7], [8]. In this context it is expected that generalizations of concepts and main results from the Classical Complex Theory, like conformal and quasiconformal mappings [9], [10] in both quaternionic and octonionic algebra, may be useful for other fields of research, as for graphical computing enviromment [11]. In this Note, following recent works by the autors [12], [13], the Cauchy Theorem will be extended for Octonions in an analogous way that it has recentely been made for quaternions [14]. Finally, will be given an octonionic treatment of the wave equation, which means a wave produced by a hyper-string with initial conditions similar to the one-dimensional case.
Resumo:
A major UK initiative, entitled 'Mapping the Underworld', is seeking to address the serious social, environmental and economic consequences arising from an inability to locate the buried utility service infrastructure without resorting to extensive excavations. Mapping the Underworld aims to develop and prove the efficacy of a multi-sensor device for accurate remote buried utility service detection, location and, where possible, identification. One of the technologies to be incorporated in the device is low-frequency vibro-acoustics, and the application of this technology for detecting buried infrastructure is currently being investigated. Here, a shear wave ground vibration technique for detecting buried pipes is described. For this technique, shear waves are generated at the ground surface, and the resulting ground surface vibrations measured, using geophones, along a line traversing the anticipated run of the pipe. Measurements were made at a test site with a single pressurized polyethylene mains water pipe. Time-extended signals were employed to generate the illuminating wave. Cross-correlation functions between the measured ground velocities and a reference measurement adjacent to the excitation were then calculated and summed using a stacking method to generate a cross-sectional image of the ground. The wide cross-correlation peaks caused by high ground attenuation were partially compensated for by using a generalized cross-correlation function called the smoothed coherence transform. To mitigate the effects of other potential sources of vibration in the vicinity, the excitation signal was used as an additional reference when calculating the generalized cross-correlation functions. For two out of three tests, the pipe was detected, indicating that this technique will be a valuable addition to the Mapping the Underworld armoury.
Resumo:
The primary objective of this study was to examine the follicular and ovulatory responses following treatment with pFSH in association with ablation-induced or spontaneous follicular wave emergence or follicle deviation during diestrus in crossbred (Mangalarga × Arabian) and Brazilian Warmblood mares with a propensity for spontaneous multiple ovulations; secondary considerations were given to the collection of embryos In Experiment 1, crossbred mares were administered (im) saline (control, n= 7) or pFSH (25 mg) when the largest follicle of the ablation-induced follicular wave reached ≥13 mm (n= 7) or ≥20 mm (n= 7) or, after pre-treatment ovulation (Day 0) on Day 6 (n= 7) In Experiment 2, crossbred mares were administered (im) saline (control, n= 10) or a larger dose of pFSH (50 mg, n= 7) when the largest follicle of the ablation-induced follicular wave reached ≥13 mm In Experiment 3, Brazilian Warmblood mares were administered (im) saline (control, n= 7), pFSH (25 mg, n= 7 or 50 mg, n= 5) or EPE (12.5 mg, n= 7) as a positive control on Day 6 Ultrasonic technology was used to ablate all follicles ≥8 mm and to monitor follicular development and detect ovulation Treatment with pFSH or EPE was done twice daily until the largest follicle reached ≥32 mm; thereafter, hCG (2500 IU) was administered (iv) when the largest follicle reached ≥35 mm Artificial insemination was done 12 h after hCG and embryo collections were done 8 d after post-treatment ovulations In Experiments 1 and 2, treatment of crossbred mares with pFSH post-ablation in association with the expected time of wave emergence or follicle deviation did not (P> 0.05) enhance the follicular or ovulatory responses or collection of embryos compared to controls In Experiment 3, although the enhanced ovulatory response of mares to EPE at the expected time of spontaneous wave emergence was not different (P> 0.05) from controls, it was greater (P< 0.05) than the response to pFSH In conclusion, the novelty of using follicle ablation prior to pFSH treatment at the time of wave emergence or follicle deviation did not enhance the follicular or ovulatory responses or collection of embryos to treatment in crossbred mares In addition, the hypothesis that Brazilian Warmblood mares with a greater propensity for spontaneous multiple ovulations are as responsive to pFSH compared to EPE was not supported Thus, the combined experimental results of the present study continue to support the general consensus that pFSH is relatively ineffective for follicular superstimulation/superovulation in mares © 2012 Elsevier B.V.
Resumo:
We investigate the low-energy elastic D̄N interaction using a quark model that confines color and realizes dynamical chiral symmetry breaking. The model is defined by a microscopic Hamiltonian inspired in the QCD Hamiltonian in Coulomb gauge. Constituent quark masses are obtained by solving a gap equation, and baryon and meson bound-state wave functions are obtained using a variational method. We derive a low-energy meson-nucleon potential from a quark-interchange mechanism whose ingredients are the quark-quark and quark-antiquark interactions and baryon and meson wave functions, all derived from the same microscopic Hamiltonian. The model is supplemented with (σ, ρ, ω, a0) single-meson exchanges to describe the long-range part of the interaction. Cross sections and phase shifts are obtained by iterating the quark-interchange plus meson-exchange potentials in a Lippmann-Schwinger equation. Once coupling constants of long-range scalar σ and a0 meson exchanges are adjusted to describe experimental phase shifts of the K+N and K0N reactions, predictions for cross sections and s-wave phase shifts for the D̄0N and D-N reactions are obtained without introducing new parameters. © 2013 American Physical Society.
Resumo:
We present a general model of brain function (the calcium wave model), distinguishing three processing modes in the perception-action cycle. The model provides an interpretation of the data from experiments on semantic memory conducted by the authors. © 2013 Pereira Jr, Santos and Barros.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Propomos um novo método de migração em profundidade baseado na solução da equação da onda com densidade constante no domínio da freqüência. Uma aproximação de Padé complexa é usada para aproximar o operador de evolução aplicado na extrapolação do campo de ondas. Esse método reduz as imprecisões e instabilidades devido às ondas evanescentes e produz imagens com menos ruídos numéricos que aquelas obtidas usando-se a aproximação de Padé real para o operador exponencial, principalmente em meios com fortes variações de velocidades. Testes em dados de afastamento nulo do modelo de sal SEG/EAGE e nos dados de tiro comum 2-D Marmousi foram realizados. Os resultados obtidos mostram que o método de migração proposto consegue lidar com fortes variações laterais e também tem uma boa resposta para refletores com mergulhos íngremes. Os resultados foram comparados àqueles resultados obtidos com os métodos split-step Fourier (SSF), phase shift plus interpolarion (PSPI) e Fourier diferenças-finitas (FFD).
Resumo:
ABSTRACT: We evaluate the quantum propagator for the motion of a particle in a linear potential via a recently developped formalism [A.B. Nassar et al., Phys. Rev. E56, 1230, (1997)]. In this formalism, the propagator comes about as a type of expansion of the wave function over the space of the initial velocities.