956 resultados para Watershed transform
Resumo:
Voltage and current waveforms of a distribution or transmission power system are not pure sinusoids. There are distortions in these waveforms that can be represented as a combination of the fundamental frequency, harmonics and high frequency transients. This paper presents a novel approach to identifying harmonics in power system distorted waveforms. The proposed method is based on Genetic Algorithms, which is an optimization technique inspired by genetics and natural evolution. GOOAL, a specially designed intelligent algorithm for optimization problems, was successfully implemented and tested. Two kinds of representations concerning chromosomes are utilized: binary and real. The results show that the proposed method is more precise than the traditional Fourier Transform, especially considering the real representation of the chromosomes.
Resumo:
The confined flows in tubes with permeable surfaces arc associated to tangential filtration processes (microfiltration or ultrafiltration). The complexity of the phenomena do not allow for the development of exact analytical solutions, however, approximate solutions are of great interest for the calculation of the transmembrane outflow and estimate of the concentration, polarization phenomenon. In the present work, the generalized integral transform technique (GITT) was employed in solving the laminar and permanent flow in permeable tubes of Newtonian and incompressible fluid. The mathematical formulation employed the parabolic differential equation of chemical species conservation (convective-diffusive equation). The velocity profiles for the entrance region flow, which are found in the connective terms of the equation, were assessed by solutions obtained from literature. The velocity at the permeable wall was considered uniform, with the concentration at the tube wall regarded as variable with an axial position. A computational methodology using global error control was applied to determine the concentration in the wall and concentration boundary layer thickness. The results obtained for the local transmembrane flux and the concentration boundary layer thickness were compared against others in literature. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
An analysis of geomorphic system`s response to change in human and natural drivers in some areas within the Rio de la Plata basin is presented The aim is to determine whether an acceleration of geomorphic processes has taken place in recent years and, if so, to what extent it is due to natural (climate) or human (land-use) drivers Study areas of different size, socio-economic and geomorphic conditions have been selected: the Rio de la Plata estuary and three sub-basins within its watershed Sediment cores were extracted and dated ((210)Pb) to determine sedimentation rates since the end of the 19th century. Rates were compared with time series on rainfall as well as human drivers such as population, GDP, livestock load, crop area, energy consumption or cement consumption, all of them related to human capacity to disturb land surface Data on river discharge were also gathered Results obtained indicate that sedimentation rates during the last century have remained essentially constant in a remote Andean basin, whereas they show important increases in the other two, particularly one located by the Sao Paulo metropolitan area Rates in the estuary are somewhere in between It appears that there is an intensification of denudation/sedimentation processes within the basin. Rainfall remained stable or varied very slightly during the period analysed and does not seem to explain increases of sedimentation rates observed. Human drivers, particularly those more directly related to capacity to disturb land surface (GDP, energy or cement consumption) show variations that suggest human forcing is a more likely explanation for the observed change in geomorphic processes It appears that a marked increase in denudation, of a ""technological"" nature, is taking place in this basin and leading to an acceleration of sediment supply This is coherent with similar increases observed in other regions (C) 2010 Elsevier B V All rights reserved
Resumo:
The Pirapo river watershed (Parana State, Brazil) compounds a relatively industrialized and urbanized region, undergoing great pressure from the discharge of industrial, agricultural and domestic wastes. We evaluated the environmental quality of ten streams belonging to this watershed in April and June 2008 by performing acute and chronic toxicity tests with Daphnia similis and Ceriodaphnia silvestrii from water and sediment samples. We tested the hypothesis that the streams located in urban areas are more exposed to the influence of pollutants, than those outside the city limits. In addition, we obtained the measures of physical and chemical parameters, and identified the main polluted sources. Contrary to what was expected, the rural streams were more toxic than those located in urban area. These results demonstrate that the water bodies located in rural areas are being affected by the pollution of aquatic ecosystems as far as those found in urban areas, requiring the same attention of environmental managers in relation to its monitoring.
Resumo:
Ternary compatible blends of chitosan, poly(vinyl alcohol), and poly(lactic acid) were prepared by an oil-in-water (O/W) emulsion process. Solutions of chitosan in aqueous acetic acid, poly(vinyl alcohol) (PVA) in water, and poly(lactic acid) (PLA) in chloroform were blended with a high shear mixer. PVA was used as an emulsifier to stabilize the emulsion and to reduce the interfacial tension between the solid polymers in the blends-produced. It proved to work very well because the emulsions were stable for periods of days or weeks and compatible blends were obtained When PVA was added. This effect was attributed to a synergistic effect of PVA and chitosan because the binary blends PVA/PLA and chitosan/PLA were completely incompatible; The blends were characterized by scanning electron microscopy (SEM), differential scanning calorimetry (DSC), thermal mechanical analysis (TMA), stress strain tests, and Fourier transform infrared spectroscopy (FTIR). The results indicated that despite the fact that the system contained distinct phases some degree of molecular miscibility occurred when the three components were present in the blend.
Resumo:
The influence of the solvent-evaporation rate on the formation of of. and P crystalline phases in solution-cast poly(vinylidene fluoride) (PVDF) films was systematically investigated. Films were crystallized from PVDF/N,N-dimethylformamide solutions with concentrations of 2.5, 5.0, 10, and 20 wt % at different temperatures. During crystallization, the solvent evaporation rate was monitored in situ by means of a semianalytic balance. With this system, it was possible to determine the evaporation rate for different concentrations and temperatures of the solution under specific ambient conditions (pressure, temperature, and humidity). Fourier-Transform InfraRed spectroscopy with Attenuated Total Reflectance revealed the P-phase content in the PVDF films and its dependence on previous evaporation rates. Based on the relation between the evaporation rate and the PVDF phase composition, a consistent explanation for the different amounts of P phase observed at the upper and lower sample surfaces is achieved. Furthermore, the role of the sample thickness has also been studied. The experimental results show that not only the temperature but also the evaporation rate have to be controlled to obtain the desired crystalline phases in solution-cast PVDF films. (C) 2009 Wiley Periodicals, Inc. J Appl Polym Sci 116: 785-791, 2010
Resumo:
Recent studies have shown that partial oxidation by advanced oxidation processes (AOP) is able to transform hard-to-degrade compounds and increase their biodegradability. In this work, anaerobic treatment was followed by ozonation, UV radiation and ozonation in the presence of UV radiation, to treat bleaching effluents from a cellulose kraft Pulp plant. The anaerobic reactor (horizontal anaerobic immobilized Sludge bed, HAISB) was Used as a pretreatment to reduce the efficient organic load before applying ACIP. The ozone treatments were applied in three different pH environments (3, 8 and 10) with retention times of 10, 30, 45 and 60 min. COD and adsorbable organic halogens (AOX) removal efficiencies at the HAISB were approximately 50%, while the BOD removal efficiency reached 80%. Ozonation promoted further removal of AOX and COD so that the combined efficiency reached 96% for AOX and 70% for COD. In the oxidation process, BOD was either removed in small quantities or actually increased, as intended, so that a second biological treatment would be able to complete the treatment. The maximum increase in the BOD(5)/COD ratio (biodegradability indicator) Occurred at pH 8, reaching 104% for ozonation at a dosage of 1540 mg(O3).L(-1). Applying UV radiation alone resulted in lower values: a 34% increase ill the BOD(5)/COD ratio and a 76% AOX removal efficiency. These results indicate that the combination of anaerobic treatment with ozonation or ozonation/UV radiation improves the treatability of cellulose pulp bleaching efficients and that the resulting wastewater is suitable for further biological treatment under aerobic conditions with a low level of toxic compounds from the halogenated family.
Resumo:
In this work, an algorithm to compute the envelope of non-destructive testing (NDT) signals is proposed. This method allows increasing the speed and reducing the memory in extensive data processing. Also, this procedure presents advantage of preserving the data information for physical modeling applications of time-dependent measurements. The algorithm is conceived to be applied for analyze data from non-destructive testing. The comparison between different envelope methods and the proposed method, applied to Magnetic Bark Signal (MBN), is studied. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
In this paper, processing methods of Fourier optics implemented in a digital holographic microscopy system are presented. The proposed methodology is based on the possibility of the digital holography in carrying out the whole reconstruction of the recorded wave front and consequently, the determination of the phase and intensity distribution in any arbitrary plane located between the object and the recording plane. In this way, in digital holographic microscopy the field produced by the objective lens can be reconstructed along its propagation, allowing the reconstruction of the back focal plane of the lens, so that the complex amplitudes of the Fraunhofer diffraction, or equivalently the Fourier transform, of the light distribution across the object can be known. The manipulation of Fourier transform plane makes possible the design of digital methods of optical processing and image analysis. The proposed method has a great practical utility and represents a powerful tool in image analysis and data processing. The theoretical aspects of the method are presented, and its validity has been demonstrated using computer generated holograms and images simulations of microscopic objects. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
This work discusses the determination of the breathing patterns in time sequence of images obtained from magnetic resonance (MR) and their use in the temporal registration of coronal and sagittal images. The registration is made without the use of any triggering information and any special gas to enhance the contrast. The temporal sequences of images are acquired in free breathing. The real movement of the lung has never been seen directly, as it is totally dependent on its surrounding muscles and collapses without them. The visualization of the lung in motion is an actual topic of research in medicine. The lung movement is not periodic and it is susceptible to variations in the degree of respiration. Compared to computerized tomography (CT), MR imaging involves longer acquisition times and it is preferable because it does not involve radiation. As coronal and sagittal sequences of images are orthogonal to each other, their intersection corresponds to a segment in the three-dimensional space. The registration is based on the analysis of this intersection segment. A time sequence of this intersection segment can be stacked, defining a two-dimension spatio-temporal (2DST) image. The algorithm proposed in this work can detect asynchronous movements of the internal lung structures and lung surrounding organs. It is assumed that the diaphragmatic movement is the principal movement and all the lung structures move almost synchronously. The synchronization is performed through a pattern named respiratory function. This pattern is obtained by processing a 2DST image. An interval Hough transform algorithm searches for synchronized movements with the respiratory function. A greedy active contour algorithm adjusts small discrepancies originated by asynchronous movements in the respiratory patterns. The output is a set of respiratory patterns. Finally, the composition of coronal and sagittal image pairs that are in the same breathing phase is realized by comparing of respiratory patterns originated from diaphragmatic and upper boundary surfaces. When available, the respiratory patterns associated to lung internal structures are also used. The results of the proposed method are compared with the pixel-by-pixel comparison method. The proposed method increases the number of registered pairs representing composed images and allows an easy check of the breathing phase. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Samples of poly(l,l-lactide)-block-poly(ethylene glycol)-block-poly(l,l-lactide) (PLLA-PEG-PLLA) were synthesized from l,l-lactide polymerization using stannous 2-ethylhexanoate, Sn(Oct)(2) as initiator and di-hydroxy-terminated poly(ethylene glycol) (PEG) (M (n) = 4000 g mol(-1)) as co-initiator. The chemical linkage between the PEG segment and the PLA segments was characterized by Fourier transform infrared spectroscopy (FTIR). Thermogravimetry analysis (TG) revealed the copolymers composition and was capable to show the deleterious effect of an excess of Sn(Oct)(2) in the polymer thermal stability, while Differential Scanning Calorimetry (DSC) allowed the observation of the miscibility between the PLLA and PEG segments in the different copolymers.
Resumo:
The effect of ultraviolet exposure on the biodegration of poly(propylene) without (PP) and with 0.3 (wt/wt) (PPOx) pro-oxidant additives, produced by extrusion was studied. After UV exposure the samples were submitted to biodegradation (weight loss) in prepared soils. The samples before and after UV exposure were analyzed using differential scanning calorimetry, Fourier transform infrared spectroscopy, size exclusion chromatography, and optical microscopy. The exposure to UV radiation lead to more intense degradation of PPOx than of PP; the amount of carbonyl groups was larger for the PPOx samples than for PP, as well as the decrease in the T(m) and in the molecular weight. The samples exposed to UV radiation showed some level of fragmentation after 56 days when placed in the prepared soil; the samples which were exposed to UV for 480 h presented just a small weight loss. POLYM. ENG. SCI., 49:123-128, 2009. (C) 2008 Society of Plastics Engineers
Resumo:
In the present work, the sensitivity of NIR spectroscopy toward the evolution of particle size was studied during emulsion homopolymerization of styrene (Sty) and emulsion copolymerization of vinyl acetate-butyl acrylate conducted in a semibatch stirred tank and a tubular pulsed sieve plate reactor, respectively. All NIR spectra were collected online with a transflectance probe immersed into the reaction medium. The spectral range used for the NIR monitoring was from 9 500 to 13 000 cm(-1), where the absorbance of the chemical components present is minimal and the changes in the NIR spectrum can be ascribed to the effects of light scattering by the polymer particles. Off-line measurements of the average diameter of the polymer particles by DLS were used as reference values for the development of the multi-variate NIR calibration models based on partial least squares. Results indicated that, in the spectral range studied, it is possible to monitor the evolution of the average size of the polymer particles during emulsion polymerization reactions. The inclusion of an additional spectral range, from 5 701 to 6 447 cm(-1), containing information on absorbances (""chemical information"") in the calibration models was also evaluated.
Resumo:
Gamma ray tomography experiments have been carried out to detect spatial patterns in the porosity in a 0.27 m diameter column packed with steel Rashig rings of different sizes: 12.6, 37.9, and 76 mm. using a first generation CT system (Chen et al., 1998). A fast Fourier transform tomographic reconstruction algorithm has been used to calculate the spatial variation over the column cross section. Cross-sectional gas porosity and solid holdup distribution were determinate. The values of cross-sectional average gas porosity were epsilon=0.849, 0.938 and 0.966 for the 12.6, 37.9, and 76 mm rings, respectively. Radial holdup variation within the packed bed has been determined. The variation of the circumferentially averaged gas holdup in the radial direction indicates that the porosity in the column wall region is a somewhat higher than that in the bulk region, due to the effect of the column wall. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
We propose a robust and low complexity scheme to estimate and track carrier frequency from signals traveling under low signal-to-noise ratio (SNR) conditions in highly nonstationary channels. These scenarios arise in planetary exploration missions subject to high dynamics, such as the Mars exploration rover missions. The method comprises a bank of adaptive linear predictors (ALP) supervised by a convex combiner that dynamically aggregates the individual predictors. The adaptive combination is able to outperform the best individual estimator in the set, which leads to a universal scheme for frequency estimation and tracking. A simple technique for bias compensation considerably improves the ALP performance. It is also shown that retrieval of frequency content by a fast Fourier transform (FFT)-search method, instead of only inspecting the angle of a particular root of the error predictor filter, enhances performance, particularly at very low SNR levels. Simple techniques that enforce frequency continuity improve further the overall performance. In summary we illustrate by extensive simulations that adaptive linear prediction methods render a robust and competitive frequency tracking technique.