954 resultados para Warm
Resumo:
The European Slope Current (SC) is a major section of the warm poleward flow from the Atlantic to the Arctic, which also moderates the exchange of heat, salt, nutrients and carbon between the deep ocean and the European shelf seas. The mean structure of the geostrophic flow, seasonality, interannual variability and long-term trend of SC are appraised with an unprecedented continuous 20-year satellite altimeter dataset. Comparisons with long term in situ data showed a maximum correlation of r2=0.51 between altimeter and Acoustic Doppler Current Profilers (ADCP), with similar results for drogued buoy data. Mean geostrophic currents were appraised more comprehensively than previous attempts, and the paths of 4 branches of the North Atlantic Current (NAC) and positions of 5 eddies in the region were derived quantitatively. A consistent seasonal cycle in the flow of the SC was found at all 8 sections along the European shelf slope, with maximum poleward flow in the winter and minimum in the summer. The seasonal difference in the altimetry current speed amounted to ~8-10 cm s-1 at the northern sections, but only ~5 cm s-1 on the Bay of Biscay slopes. This extended altimeter dataset indicates significant regional and seasonal variations, and has revealed new insights into the interannual variability of the SC. It is shown that there is a peak poleward flow at most positions along a ~2000 km stretch of the continental slope from Portugal to Scotland during 1995-1997, but this did not clearly relate to the extreme negative North Atlantic Oscillation (NAO) in the winter of 1995-1996. The speed of the SC exhibited a long term decreasing trend of ~1% per year. By contrast the NAC showed no significant trend over the 20-year period. Major changes in the NAC occurred three times, and these changes followed decreases in the NAO index.
Resumo:
Climate change has already led to the range expansion of warm-water plankton assemblages in the northeast Atlantic and the corresponding range contraction of colder-water species. The temperate copepod Calanus finmarchicus is predicted to shift farther northward into polar waters traditionally dominated by the arctic copepod C. glacialis. To identify temperaturemediated changes in gene expression that may be critical for the thermal acclimation and resilience of the 2 Calanus spp., we conducted a whole transcriptome profiling using RNA-seq on an Ion Torrent platform. Transcriptome responses of C. finmarchicus and C. glacialis from Disko Bay, west Greenland, were investigated under realistic thermal stresses (at + 5, +10 and +15°C) for 4 h and 6 d. C. finmarchicus showed a strong response to temperature and duration of stress, involving up-regulation of genes related to protein folding, transcription, translation and metabolism. In sharp contrast, C. glacialis displayed only low-magnitude changes in gene expression in response to temperature and duration of stress. Differences in the thermal responses of the 2 species, particularly the lack of thermal stress response in C. glacialis, are in line with laboratory and field observations and suggest a vulnerability of C. glacialis to climate change.
Resumo:
In a warming climate, differential shifts in the seasonal timing of predators and prey have been suggested to lead to trophic ‘‘mismatches’’ that decouple primary, secondary and tertiary production. We tested this hypothesis using a 25-year time-series of weekly sampling at the Plymouth L4 site, comparing 57 plankton taxa spanning 4 trophic levels. During warm years, there was a weak tendency for earlier timings of spring taxa and later timings of autumn taxa. While this is in line with many previous findings, numerous exceptions existed and only a few taxa (e.g. Gyrodinium spp., Pseudocalanus elongatus, and Acartia clausi) showed consistent, strong evidence for temperature-related timing shifts, revealed by all 4 of the timing indices that we used. Also, the calculated offsets in timing i.e. ‘‘mismatches’’) between predator and prey were no greater in extreme warm or cold years than during more average years. Further, the magnitude of these offsets had no effect on the ‘‘success’’ of the predator, in terms of their annual mean abundance or egg production rates. Instead numerous other factors override, including: inter-annual variability in food quantity, high food baseline levels, turnover rates and prolonged seasonal availability, allowing extended periods of production. Furthermore many taxa, notably meroplankton, increased well before the spring bloom. While theoretically a chronic mismatch, this likely reflects trade-offs for example in predation avoidance. Various gelatinous taxa (Phaeocystis, Noctiluca, ctenophores, appendicularians, medusae) may have reduced these predation constraints, with variable, explosive population outbursts likely responding to improved conditions. The match–mismatch hypothesis may apply for highly seasonal, pulsed systems or specialist feeders, but we suggest that the concept is being over-extended to other marine systems where multiple factors compensate.
Resumo:
Advances in habitat and climate modelling allow us to reduce uncertainties of climate change impacts on species distribution. We evaluated the impacts of future climate change on community structure, diversity, distribution and phenology of 14 copepod species in the North Atlantic. We developed and validated habitat models for key zooplankton species using continuous plankton recorder (CPR) survey data collected at mid latitudes of the North Atlantic. Generalized additive models (GAMs) were applied to relate the occurrence of species to environmental variables. Models were projected to future (2080–2099) environmental conditions using coupled hydroclimatix–biogeochemical models under the Intergovernmental Panel on Climate Change (IPCC) A1B climate scenario, and compared to present (2001–2020) conditions. Our projections indicated that the copepod community is expected to respond substantially to climate change: a mean poleward latitudinal shift of 8.7 km per decade for the overall community with an important species range variation (–15 to 18 km per decade); the species seasonal peak is expected to occur 12–13 d earlier for Calanus finmarchicus and C. hyperboreus; and important changes in community structure are also expected (high species turnover of 43–79% south of the Oceanic Polar Front). The impacts of the change expected by the end of the century under IPCC global warming scenarios on copepods highlight poleward shifts, earlier seasonal peak and changes in biodiversity spatial patterns that might lead to alterations of the future North Atlantic pelagic ecosystem. Our model and projections are supported by a temporal validation undertaken using the North Atlantic climate regime shift that occurred in the 1980s: the habitat model built in the cold period (1970–1986) has been validated in the warm period (1987–2004).
Resumo:
This paper describes the detailed validation of a computer model designed to simulate the transient light-off in a two-stroke oxidation catalyst. A plug flow reactor is employed to provide measurements of temperature and gas concentration at various radial and axial locations inside the catalyst. These measurements are recorded at discrete intervals during a transient light-off in which the inlet temperature is increased from ambient to 300oC at rates of up to 6oC/sec. The catalyst formulation used in the flow reactor, and its associated test procedures, are then simulated by the computer and a comparison made between experimental readings and model predictions. The design of the computer model to which this validation exercise relates is described in detail in a separate technical paper. The first section of the paper investigates the warm-up characteristics of the substrate and examines the validity of the heat transfer predictions between the wall and the gas in the absence of chemical reactions. The predictions from a typical single-component CO transient light-off test are discussed in the second section and are compared with experimental data. In particular the effect of the temperature ramp on the light-off curve and reaction zone development is examined. An analysis of the C3H6 conversion is given in the third section while the final section examines the accuracy of the light-off curves which are produced when both CO and C3H6 are present in the feed gas. The analysis shows that the heat and mass transfer calculations provided reliable predictions of the warm-up behaviour and post light-off gas concentration profiles. The self-inhibition and cross-inhibition terms in the global rate expressions were also found to be reasonably reliable although the surface reaction rates required calibration with experimental data.
Resumo:
We present Westerbork Synthesis Radio Telescope HI images, Lovell telescope multibeam H I wide-field mapping, William Herschel Telescope long-slit echelle Ca II observations, Wisconsin Halpha Mapper (WHAM) facility images, and IRAS ISSA 60- and 100-mum co-added images towards the intermediate- velocity cloud (IVC) at + 70 km s(-1), located in the general direction of the M15 globular cluster. When combined with previously published Arecibo data, the H I gas in the IVC is found to be clumpy, with a peak H I column density of similar to1.5 x 10(20) cm(-2), inferred volume density (assuming spherical symmetry) of similar to24 cm(-3)/D (kpc) and a maximum brightness temperature at a resolution of 81 x 14 arcsec(2) of 14 K. The major axis of this part of the IVC lies approximately parallel to the Galactic plane, as does the low- velocity H I gas and IRAS emission. The H I gas in the cloud is warm, with a minimum value of the full width at half-maximum velocity width of 5 km s(-1) corresponding to a kinetic temperature, in the absence of turbulence, of similar to540 K. From the H I data, there are indications of two-component velocity structure. Similarly, the Ca II spectra, of resolution 7 km s(-1), also show tentative evidence of velocity structure, perhaps indicative of cloudlets. Assuming that there are no unresolved narrow-velocity components, the mean values of log(10)[N(Ca II K) cm(2)] similar to 12.0 and Ca II/H I similar to2 5 x 10(-8) are typical of observations of high Galactic latitude clouds. This compares with a value of Ca II/H I>10(-6) for IVC absorption towards HD 203664, a halo star of distance 3 kpc, some 3.degrees1 from the main M15 IVC condensation. The main IVC condensation is detected by WHAM in Halpha with central local-standard-of-rest velocities of similar to60-70 km s(-1), and intensities uncorrected for Galactic extinction of up to 1.3 R, indicating that the gas is partially ionized. The FWHM values of the Halpha IVC component, at a resolution of 1degrees, exceed 30 km s(-1). This is some 10 km s(-1) larger than the corresponding H I value at a similar resolution, and indicates that the two components may not be mixed. However, the spatial and velocity coincidence of the Halpha and H I peaks in emission towards the main IVC component is qualitatively good. If the Halpha emission is caused solely by photoionization, the Lyman continuum flux towards the main IVC condensation is similar to2.7 x 10(6) photon cm(-2) s(-1). There is not a corresponding IVC Halpha detection towards the halo star HD 203664 at velocities exceeding similar to60 km s(- 1). Finally, both the 60- and 100-mum IRAS images show spatial coincidence, over a 0.675 x 0 625 deg(2) field, with both low- and intermediate-velocity H I gas (previously observed with the Arecibo telescope), indicating that the IVC may contain dust. Both the Halpha and tentative IRAS detections discriminate this IVC from high-velocity clouds, although the H I properties do not. When combined with the H I and optical results, these data point to a Galactic origin for at least parts of this IVC.
Resumo:
We present echelle spectrograph observations in the Na D lines, at resolutions of 6.2-8.5 km s(-1), for 11 stars located in the line-of-sight to the M15 intermediate velocity cloud (IVC), which has a radial velocity of similar to +70 km s(-1) in the Local Standard of Rest. This cloud is a part of IVC Complex gp. The targets range in magnitude from m(V) = 13.3-14.8. Seven of the observed stars are in the M15 globular cluster, the remaining four being field stars. Three of the observed cluster stars are located near a peak in intensity of the IVC Hi column density as observed at a resolution of similar to 1 arcmin. Intermediate velocity gas is detected in absorption towards 7 stars, with equivalent widths in NaD2 ranging from similar to0.09-0.20 Angstrom, corresponding to log(10)(N-Na cm(-2)) similar to 11.8-12.5, and Na I/H I column density ratios (neglecting the HII component) ranging from similar to(1-3) x 10(-8). Over scales ranging from 30 arcsec to 1 arcmin, the Na i column density and the Na i/H i ratio varies by upto 70 per cent and a factor of similar to 2, respectively. Combining the current sightlines with previously obtained Nai data from Kennedy et al. (1998b), the Na i/H i column density ratio over cluster sightlines varies by upto a factor of similar to 25, when using Hi data of resolution similar to 2 x 1 arcmin. One cluster star, M15 ZNG-1, was also observed in the Ca i (lambda(air) = 4226.728 Angstrom) and Ca ii (lambda(air) = 3933.663 Angstrom) lines. A column density ratio N(Ca i)/N(Ca ii) <0.03 was found, typical of values seen in the warm ionised interstellar medium. Towards this sightline, the IVC has a Nai/Ca ii column density ratio of &SIM; 0.25, similar to that observed in the local interstellar medium. Finally, we detect tentative evidence for IV absorption in Ki (?(air) = 7698:974 &ANGS) towards 3 cluster stars, which have N(K i)/N(H i) ratios of &SIM;0.5-3 x 10(-9).
Resumo:
The construction of short-pulse tunable soft x-ray free electron laser sources based on the self-amplified spontaneous emission process will provide a major advance in capability for dense plasma-related and warm dense matter (WDM) research. The sources will provide 10(13) photons in a 200-fs duration pulse that is tunable from approximately 6 to 100 nm. Here we discuss only two of the many applications made possible for WDM that has been severely hampered by the fact that laser-based methods have been unavailable because visible light will not propagate at electron densities of n(e) greater than or equal to 10(22) cm(-3). The next-generation light sources will remove these restrictions.
Resumo:
The analysis of chironomid taxa and environmental datasets from 46 New Zealand lakes identified temperature (February mean air temperature) and lake production (chlorophyll a (Chl a)) as the main drivers of chironomid distribution. Temperature was the strongest driver of chironomid distribution and consequently produced the most robust inference models. We present two possible temperature transfer functions from this dataset. The most robust model (weighted averaging-partial least squares (WA-PLS), n = 36) was based on a dataset with the most productive (Chl a > 10 lg l)1) lakes removed. This model produced a coefficient of determination (r2 jack) of 0.77, and a root mean squared error of prediction (RMSEPjack) of 1.31C. The Chl a transfer function (partial least squares (PLS), n = 37) was far less reliable, with an r2 jack of 0.49 and an RMSEPjack of 0.46 Log10lg l)1. Both of these transfer functions could be improved by a revision of the taxonomy for the New Zealand chironomid taxa, particularly the genus Chironomus. The Chironomus morphotype was common in high altitude, cool, oligotrophic lakes and lowland, warm, eutrophic lakes. This could reflect the widespread distribution of one eurythermic species, or the collective distribution of a number of different Chironomus species with more limited tolerances. The Chl a transfer function could also be improved by inputting mean Chl a values into the inference model rather than the spot measurements that were available for this study.
Resumo:
Extreme states of matter such as Warm Dense Matter “WDM” and Dense Strongly Coupled Plasmas “DSCP” play a key role in many high energy density experiments, however creating WDM and DSCP in a manner that can be quantified is not readily feasible. In this paper, isochoric heating of matter by intense heavy ion beams in spherical symmetry is investigated for WDM and DSCP research: The heating times are long (100 ns), the samples are macroscopically large (mm-size) and the symmetry is advantageous for diagnostic purposes. A dynamic confinement scheme in spherical symmetry is proposed which allows even ion beam heating times that are long on the hydrodynamic time scale of the target response. A particular selection of low Z-target tamper and x-ray probe radiation parameters allows to identify the x-ray scattering from the target material and use it for independent charge state measurements Z* of the material under study.
Resumo:
The propagation of acoustic nonlinear excitations in an electron-positron-ion (e-p-i) plasma composed of warm electrons and positrons, as well as hot ions, has been investigated by adopting a two-dimensional cylindrical geometry. The electrons and positrons are modeled by hydrodynamic fluid equations, while the ions are assumed to follow a temperature-parametrized Boltzmann distribution (the fixed ion model is recovered in the appropriate limit). This situation applies in the accretion disk near a black hole in active galactic nuclei, where the ion temperature may be as high as 3 to 300 times that of the electrons. Using a reductive perturbation technique, a cylindrical Kadomtsev-Petviashvili equation is derived and its exact soliton solutions are presented. Furthermore, real situations in which the strength of the nonlinearity may be weak are considered, so that higher-order nonlinearity plays an important role. Accordingly, an extended cylindrical Kadomtsev-Petviashvili equation is derived, which admits both soliton and double-layer solutions. The characteristics of the nonlinear excitations obtained are investigated in detail
Resumo:
Pollen analysis of continuous sediment cores from two lakes in the northern Chonos Archipelago (44S) in southern Chile shows a complete postglacial record of vegetation change. The fossil records indicate that deglaciation was complete in the northern Chonos by at least 13,600 14Cyr BP. Ericaceous heath and grassland persisted for more than 600 years after deglaciation under the influence of dry/cold climates and frequent burning. Nothofagus-Pilgerodendron-Podocarpus forest, with modern analogues in the southern Chonos Archipelago, was established across the northern islands by 12,400 14Cyr BP under increasingly warm and wet climates. There is no evidence for a return to cooler climates during the Younger Dryas chronozone. The rise of Tepualia stipularis and Weinmannia trichosperma as important forest components between 10,600 and 6000 14Cyr BP may be associated withclimates that were warmer than present. The collapse of Pilgerodendron communities during this time may have been triggered by a combination of factors related to disturbance frequency including tephra deposition events, fire and climate change. After 6000 14Cyr BP Pilgerodendron recovers and Nothofagus-Pilgerodendron-Tepualia forest persists until the present. European logging and burning activity may have increased the susceptibility of North Patagonian Rainforest to invasion by introduced species and to future collapse of the long-lived Pilgerodendron communities.
Resumo:
The UK PRIME cruise, June-July 1996 in the NE Atlantic, consisted of two legs. During the first, detailed chemical and biological observations were made in time-series mode adjacent to the centre of a cold-core eddy in the vicinity of 59 degreesN 20 degreesW using SF6 tracer techniques as the basis for the Lagrangian study. The eddy, which appeared to have been formed the previous winter, remained coherent over the 9 days of the survey and advected only slowly. The phytoplankton community in the eddy was dominated by the coccolithophorid Coccolithus huxleyi. High microzooplankton grazing rates indicated minimal export losses from the surface layer. Significant shifts in many, but not all, of the chemical and biological properties measured were observed over the course of the experiment, especially after the passage of a storm event, which resulted in considerable deepening of the mixed layer followed by a return to fully stratified conditions. The second leg consisted of a transect from 59 degreesN 20 degreesW to 37 degreesN 19 degreesW, with a further Lagrangian time-series study based on a drogue marker initiated at the southern end of the transect. Maximal biological activity was generally encountered in the region between two fronts located at 52.5 degreesN and 48 degreesN, while to the south of 48 degreesN oligotrophic conditions prevailed. At the southern Lagrangian site, a deep chlorophyll maximum was present and high column new production was recorded as a result of the euphotic zone extending below the depth of the nutricline. Microzooplankton grazing rates were lower at this location than at the northern eddy site. The influx of a warm, saline water body into the upper layers during the southern survey led to a major shift in many of the biological and chemical properties being measured. At both the northern and southern Lagrangian sites, the biomass of the mesozooplankton exceeded that of the microzooplankton. (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
The genus Asparagopsis was studied using 25 Falkenbergia tetrasporophyte strains collected worldwide. Plastid (cp) DNA RFLP revealed three groups of isolates, which differed in their small subunit rRNA gene sequences, temperature responses, and tetrasporophytic morphology (cell sizes). Strains from Australia, Chile, San Diego, and Atlantic and Mediterranean Europe were identifiable as A. armata Harvey, the gametophyte of which has distinctive barbed spines. This species is believed to be endemic to cold-temperate waters of Australia and New Zealand and was introduced into Europe in the 1920s. All isolates showed identical cpDNA RFLPs, consistent with a recent introduction from Australia. Asparagopsis taxiformis (Delile) Trevisan, the type and only other recognized species, which lacks spines, is cosmopolitan in warm-temperate to tropical waters. Two clades differed morphologically and ecophysiologically and in the future could be recognized as sibling species or subspecies. A Pacific/Italian clade had 4-8degrees C lower survival minima and included a genetically distinct apomictic isolate from Western Australia that corresponded to the form of A. taxiformis originally described as A. sanfordiana Harvey. The second clade, from the Caribbean and the Canaries, is stenothermal (subtropical to tropical) with some ecotypic variation. The genus Asparagopsis consists of two or possibly three species, but a definitive taxonomic treatment of the two A. taxiformis clades requires study of field-collected gametophytes.
Resumo:
Samples were taken at each stage of brewing (malt, milling, mashing, wort separation, hop addition, boiling, whirlpool, dilution, fermentation, warm rest, chill-lagering, beer filtration, carbonation and bottling, pasteurization, and storage). The level of antioxidant activity of unfractionated, low-molecular-mass (LMM) and high-molecular-mass (HMM) fractions was measured by the 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfortic acid) radical cation (ABTS(.+)) and ferric-reducing antioxidant power (FRAP) procedures. Polyphenol levels were assessed by HPLC. The LMM fraction ( 0.001) in catechin and ferulic acid levels. Increases in antioxidant activity levels were observed after mashing, boiling, fermentation, chill-lagering, and pasteurization, in line with previous studies on lager. Additionally, increases in the level of antioxidant activity occurred after wort separation and carbonation and bottling and were accompanied by increases in levels of most monitored polyphenols. Data from the ABTS(.-) and FRAP assays indicated that the compounds contributing to the levels of antioxidant activity responded differently in the two procedures. Levels of ferulic, vanillic, and chlorogenic acids and catechin accounted for 45-61% of the variation in antioxidant activity levels.