961 resultados para WHEAT-FLOUR


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Wood plastic composites (WPCs) have gained popularity as building materials because of their usefulness in replacing solid wood in a variety of applications. These composites are promoted as being low-maintenance, high-durability products. However, it has been shown that WPCs exposed to weathering may experience a color change and/or loss in mechanical properties. An important requirement for building materials used in outdoor applications is the retention of their aesthetic qualities and mechanical properties during service life. Therefore, it is critical to understand the photodegradation mechanisms of WPCs exposed to UV radiation and to develop approaches to stabilize these composites (both unstabilized and stabilized) as well as the effect of weathering on the color fade and the retention of mechanical properties were characterized. Since different methods of manufacturing WPCs lead to different surface characteristics, which can influence weathering, the effect of manufacturing method on the photodegradation of WPCs was investigated first. Wood flour (WF) filled high-density polyethylene (HDPE) composite samples were either injection molded, extruded, or extruded and then planed. Fourier transform infrared (FTIR) spectroscopy was used to monitor the surface chemistry of the manufactured composites. The spectra showed that the surface of planed samples had more wood component than extruded and injection molded samples, respectively. After weathering, the samples were analyzed for color fade, and loss of flexural properties. The final lightness of the composites was not dependent upon the manufacturing method. However the mechanical property loss was dependent upon manufacturing method. The samples with more wood component at the surface (planed samples) experienced a larger percentage of total loss in flexural properties after weathering due to a greater effect of moisture on the samples. The change in surface chemistry of HDPE and WF/HDPE composites after weathering was studied using spectroscopic techniques. X-ray photoelectron spectroscopy (XPS) was used to characterize the occurrence of surface oxidation whereas FTIR spectroscopy was used to monitor the development of degradation products, such as carbonyl groups and vinyl groups, and to determine changes in HDPE crystallinity. Surface oxidation occurred immediately after exposure for both the neat HDPE and WF/HDPE composites. After weathering, the surface of the WF/HDPE composites was oxidized to a greater extent than the neat HDPE after weathering. This suggests that photodegradation is exacerbated by the addition of the carbonyl functional groups of the wood fibers within the HDPE atrix during composite manufacturing. While neat HDPE may undergo cross-linking in the initial stages of accelerated weathering, the WF may physically hinder the ability of the HDPE to cross-link resulting in the potential for HDPE chain scission to dominate in the initial weathering stages of the WF/HDPE composites. To determine which photostabilizers are most effective for WF/HDPE composites, factorial experimental designes were used to determine the effects of adding two hindered amine light stabilizers, an ultraviolet absorber, and a pigment on the color made and mechanical properties of both unweathered and UV weathered samples. Both the pigment and ultraviolet absorber were more effective photostabilizers for WF/HDPE composites than hinder amine light stabilizers. The ineffectiveness of hindered amine light stabilizers in protecting WPCs against UV radiation was attribuated to the acid/base reactions occurring between the WF and hindered amine light stabilizer. The efficiency of an ultraviolet absorber and/or pigment was also examined by incorporating different concentration of an ultraviolet absorber and/or pigment into WF/HDPE composites. Color change and flexural properties were determined after accelerated UV weathering. The lightness of the composite after weathering was influenced by the concentration of both the ultraviolet absorber by masking the bleaching wood component as well as blocking UV light. Flexural MOE loss was influenced by an increase in ultraviolet absorber concentration, but increasing pigment concentration from 1 to 2% had little influence on MOE loss. However, increasing both ultraviolet absorber and pigment concentration resulted in improved strength properties over the unstabilized composites after 3000 h of weather. Finally, the change in surface chemistry due to weathering of WF/HDPE composites that were either unstabilized or stabilized with an ultraviolet absorber and/or pigment was analyzed using FTIR spectroscopy. The samples were tested for loss in modulus of elasticity, carbonyl and vinyl group formation at the surface, and change in HDPE crystallinity. It was concluded that structural changes in the samples; carbonyl group formation, terminal vinyl group formation, and crystallinity changes cannot reliably be used to predict changes in modulus of elasticity using a simple linear relationship. The effect of cross-linking, chain scission, and crystallinity changes due to ultraviolet exposure as well as the interfacial degradation due to moisture exposure are inter-related factors when weathering HDPE and WF/HDPE composites.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

As part of the ESA-funded MELiSSA program, the suitability, the growth and the development of four bread wheat cultivars were investigated in hydroponic culture with the aim to incorporate such a cultivation system in an Environmental Control and Life Support System (ECLSS). Wheat plants can fulfill three major functions in space: (a) fixation of CO2 and production of O2, (b) production of grains for human nutrition and (c) production of cleaned water after condensation of the water vapor released from the plants by transpiration. Four spring wheat cultivars (Aletsch, Fiorina, Greina and CH Rubli) were grown hydroponically and compared with respect to growth and grain maturation properties. The height of the plants, the culture duration from germination to harvest, the quantity of water used, the number of fertile and non-fertile tillers as well as the quantity and quality of the grains harvested were considered. Mature grains could be harvested after around 160 days depending on the varieties. It became evident that the nutrient supply is crucial in this context and strongly affects leaf senescence and grain maturation. After a first experiment, the culture conditions were improved for the second experiment (stepwise decrease of EC after flowering, pH adjusted twice a week, less plants per m2) leading to a more favorable harvest (higher grain yield and harvest index). Considerably less green tillers without mature grains were present at harvest time in experiment 2 than in experiment 1. The harvest index for dry matter (including roots) ranged from 0.13 to 0.35 in experiment 1 and from 0.23 to 0.41 in experiment 2 with modified culture conditions. The thousand-grain weight for the four varieties ranged from 30.4 to 36.7 g in experiment 1 and from 33.2 to 39.1 g in experiment 2, while market samples were in the range of 39.4–46.9 g. Calcium levels in grains of the hydroponically grown wheat were similar to those from field-grown wheat, while potassium, magnesium, phosphorus, iron, zinc, copper, manganese and nickel levels tended to be higher in the grains of experimental plants. It remains a challenge for future experiments to further adapt the nutrient supply in order to improve senescence of vegetative plant parts, harvest index and the composition of bread wheat grains.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction: The re sponse of crop plants ex posed on drought or heat shock is related to de crease in the synthesis of normal proteins, accompanied by increased translation of heat shock proteins (HSPs). Though drought and heat stress have been studied individually, little is known about their combined effect on plants. Methods: The wheat (Triticum aestivum L.) varieties (Katya-tolerant, Sadovo or Mladka-susceptible) were potted in soil. Eight-day-old plants were ex posed to with drawing water for seven days. Heat shock was realized in growth chamber at 40 °C for 6h. A combination of drought and heat shock was per formed by subjecting drought-stressed plants to heat shock treatment. Expression of HSPs in the first leaf of wheat varieties was analyzed by SDS electrophoresis and immunoblotting. Polyclonal antibodies against HSP20, HSP60, HSP110 and mononclonal antibodies against HSP70 were used to distinguish the mentioned HSPs. Results: The leaf relative water content (RWC), which indicated the level of plant dehydration decreased significantly (34 %) under drought stressed conditions The electrolyte leakage of ions (EL), representing the level of the cell membrane stability in creased mark edly (68 %), especially under combination of drought and heat. Maximum EL was ob served in drought susceptible varieties Sadovo and Mladka. Drought and heat shock combination in the wheat plants resulted in the induction of specific HSPs. Conclusions: Our results demonstrate that the response of the wheat plants to a combination of drought and heat stress is different from the response of plants to each of these stresses applied separately. Induction of synergetic effect on HSP expression in case of combination between drought and heat was discussed in the case of two contrasting wheat varieties.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction: Drought is one of the most significant factors that limit plant productivity. Oxidative stress is a secondary event in many unfavorable environmental conditions. Intracellular proteases have a role in the metabolism reorganisation and nutrient remobilization under stress. In order to under stand the relative significance of oxidative stress and proteolysis in the yield reduction under drought, four varieties of Triticum aestivum L. with different field drought resistance were examined. Methods: A two-year field experiment was conducted. Analyses were performed on the upper most leaf of control plants and plants under water deficitat the stages most critical for yield reduction under drought (from jointing till milk ripeness). Leaf water deficit and electrolyte leakage, malondyaldehyde level, activities and isoenzymes of superoxide dismutase, catalase and peroxidase, leaf protein content and proteolytic activity were studied. Yield components were analyzed. Results: A general trend of increasing the membrane in stability and accumulation of lipid hydroperoxides was observed with some differences among varieties, especially under drought. The anti-oxidative enzyme activities were progressively enhanced, as well as the azocaseinolytic activities. The leaf protein content decreased under drought at the last phase. Differences among varieties were observed in the parameters under study. They were compared to yield components` reduction under water deprivation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Changes in chlorophyll content, ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) binding protein (RBP), Rubisco activase (RA), Rubisco large (LS) and small (SS) subunits, and electrolyte leakage were investigated in wheat leaf segments during heat stress (HS) for 1 h and for 24 h at 40 °C in darkness or in light, as well as after recovery from heat stress (HSR) for 24 h at 25 °C in light. The 24-h HS treatment in darkness decreased irreversibly photosynthetic pigments, soluble proteins, RBP, RA, Rubisco LS and SS. An increase in RA and RBP protein contents was observed under 24-h HS and HSR in light. This increase was in accordance with their role as chaperones and the function of RBP as a heat shock protein.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

• Background and Aims The uptake, translocation and redistribution of the heavy metals zinc, manganese, nickel, cobalt and cadmium are relevant for plant nutrition as well as for the quality of harvested plant products. The long-distance transport of these heavy metals within the root system and the release to the shoot in young wheat (Triticum aestivum ‘Arina’) plants were investigated. • Methods After the application of 65Zn, 54Mn, 63Ni, 57Co and 109Cd for 24 h to one seminal root (the other seminal roots being excised) of 54-h-old wheat seedlings, the labelled plants were incubated for several days in hydroponic culture on a medium without radionuclides. • Key Results The content of 65Zn decreased quickly in the labelled part of the root. After the transfer of 65Zn from the roots to the shoot, a further redistribution in the phloem from older to younger leaves was observed. In contrast to 65Zn, 109Cd was released more slowly from the roots to the leaves and was subsequently redistributed in the phloem to the youngest leaves only at trace levels. The content of 63Ni decreased quickly in the labelled part of the root, moving to the newly formed parts of the root system and also accumulating transiently in the expanding leaves. The 54Mn content decreased quickly in the labelled part of the root and increased simultaneously in leaf 1. A strong retention in the labelled part of the root was observed after supplying 57Co. • Conclusions The dynamics of redistribution of 65Zn, 54Mn, 63Ni, 57Co and 109Cd differed considerably. The rapid redistribution of 63Ni from older to younger leaves throughout the experiment indicated a high mobility in the phloem, while 54Mn was mobile only in the xylem and 57Co was retained in the labelled root without being loaded into the xylem.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The phloem mobility of heavy metals is relevant to the redistribution of micronutrients and pollutants and, ultimately, to the quality of harvested plant parts. The relative mobility in wheat may vary considerably between different cations. In the study reported here, radio-labeled nickel (Ni), cobalt (Co), manganese (Mn), zinc (Zn) and cadmium (Cd) were introduced into either intact young winter wheat (Triticum aestivum L. cv. Arina) via a leaf flap, or detached maturing shoots via the cut stem. Elements fed into the lamina of the second leaf of 21-day-old plants were translocated to the younger (expanding) leaves and to the roots but not or only in trace amounts to the first (already fully expanded) leaf. The 63Ni and 65Zn were exported more rapidly compared with the other heavy metals. Most of 54Mn was retained in the originally labeled leaf. The peduncle of some maturing shoots was steam-girdled below the ear to distinguish between xylem and phloem transport. This phloem interruption reduced the content of 63Ni in the ear to about 25%. Intermediate effects were observed for 65Zn, 57Co, and 109Cd. Total 54Mn accumulation in the ear was hardly affected by steam-girdling, indicating a transport of this element within the xylem to the ear. These results suggest that the relative phloem mobility of Ni and Zn in young wheat plants and in maturing wheat shoots is higher than the mobility of Co and Cd, whereas the mobility of Mn is very low.