966 resultados para Volumetric displays
Resumo:
A hybrid computer for structure factor calculations in X-ray crystallography is described. The computer can calculate three-dimensional structure factors of up to 24 atoms in a single run and can generate the scatter functions of well over 100 atoms using Vand et al., or Forsyth and Wells approximations. The computer is essentially a digital computer with analog function generators, thus combining to advantage the economic data storage of digital systems and simple computing circuitry of analog systems. The digital part serially selects the data, computes and feeds the arguments into specially developed high precision digital-analog function generators, the outputs of which being d.c. voltages, are further processed by analog circuits and finally the sequential adder, which employs a novel digital voltmeter circuit, converts them back into digital form and accumulates them in a dekatron counter which displays the final result. The computer is also capable of carrying out 1-, 2-, or 3-dimensional Fourier summation, although in this case, the lack of sufficient storage space for the large number of coefficients involved, is a serious limitation at present.
Resumo:
Escherichia coil encodes two aminopeptidases belonging to the M17 family: Peptidase A (PepA) and Peptidase B (PepB). To gain insights into their substrate specificities, PepA or PepB were overexpressed in Delta pepN, which shows greatly reduced activity against the majority of amino acid substrates. Overexpression of PepA or PepB increases catalytic activity of several aminopeptidase substrates and partially rescues growth of Delta pepN during nutritional downshift and hightemperature stress. Purified PepA and PepB display broad substratespecificity and Leu, Lys, Met and Gly are preferred substrates. However, distinct differences are observed between these two paralogs: PepA is more stable at high temperature whereas PepB displays broader substrate specificity as it cleaves Asp and insulin B chain peptide. Importantly, this strategy, i.e. overexpression of peptidases in Delta pepN and screening a panel of substrates for cleavage, can be used to rapidly identify peptidases with novel substrate specificities encoded in genomes of different organisms. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
A number of studies have shown that the structure and composition of bacterial nucleoid influences many a processes related to DNA metabolism. The nucleoid-associated proteins modulate not only the DNA conformation but also regulate the DNA metabolic processes such as replication, recombination, repair and transcription. Understanding of how these processes occur in the context of Mycobacterium tuberculosis nucleoid is of considerable medical importance because the nucleoid structure may be constantly remodeled in response to environmental signals and/or growth conditions. Many studies have concluded that Escherichia coli H-NS binds to DNA in a sequence-independent manner, with a preference for A-/T-rich tracts in curved DNA; however, recent studies have identified the existence of medium- and low-affinity binding sites in the vicinity of the curved DNA. Here, we show that the M. tuberculosis H-NS protein binds in a more structure-specific manner to DNA replication and repair intermediates, but displays lower affinity for double-stranded DNA with relatively higher GC content. Notably, M. tuberculosis H-NS was able to bind Holliday junction (HJ), the central recombination intermediate, with substantially higher affinity and inhibited the three-strand exchange promoted by its cognate RecA. Likewise, E. coli H-NS was able to bind the HJ and suppress DNA strand exchange promoted by E. coli RecA, although much less efficiently compared to M. tuberculosis H-NS. Our results provide new insights into a previously unrecognized function of H-NS protein, with implications for blocking the genome integration of horizontally transferred genes by homologous and/or homeologous recombination.
Resumo:
In this paper, modes I and II crack tip fields in polycrystalline plastic solids are studied under plane strain, small scale yielding conditions. Two different initial textures of an Al–Mg alloy, viz., continuous cast AA5754 sheets in the recrystallized and cold rolled conditions, are considered. The former is nearly-isotropic, while the latter displays distinct anisotropy. Finite element simulations are performed by employing crystal plasticity constitutive equations along with a Taylor-type homogenization as well as by using the Hill quadratic yield theory. It is found that significant texture evolution occurs close to the notch tip which profoundly influences the stress and plastic strain distributions. Also, the cold rolling texture gives rise to higher magnitude of plastic strain near the tip.
Resumo:
In this paper, modes I and II crack tip fields in polycrystalline plastic solids are studied under plane strain, small scale yielding conditions. Two different initial textures of an Al-Mg alloy, viz.,continuous cast AA5754 sheets in the recrystallized and cold rolled conditions, are considered. The former is nearly-isotropic, while the latter displays distinct anisotropy. Finite element simulations are performed by employing crystal plasticity constitutive equations along with a Taylor-type homogenization as well as by using the Hill quadratic yield theory. It is found that significant texture evolution occurs close to the notch tip which profoundly influences the stress and plastic strain distributions. Also, the cold rolling texture gives rise to higher magnitude of plastic strain near the tip. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
We describe here a novel method of generating large volumetric heating in a liquid. The method uses the principle of ohmic heating of the liquid, rendered electrically conducting by suitable additives if necessary. Electrolysis is prevented by the use of high frequency alternating voltage and chemically treated electrodes. The technique is demonstrated by producing substantial heating in an initially neutral jet of water. Simple flow visualisation studies, made by adding dye to the jet, show marked changes in the growth and development of the jet with heat addition.
Resumo:
For hybrid electric vehicles the batteries and the drive dc-link may be at different voltages. The batteries are at low voltage to obtain higher volumetric efficiencies and the dc-link is at higher voltage to have higher efficiency on the motor side. Therefore a power interface between the batteries and the drive's dc-link is essential. This power interface should handle power flow from battery to motor, motor to battery, external genset to battery and grid to battery. This paper proposes a multi power port topology which is capable of handling multiple power sources and still maintains simplicity and features like obtaining any gain, wide load variations, lower output current ripple and capability of parallel battery energy due to the modular structure. The development and testing of a bi-directional fly-back DC-DC converter for hybrid electric vehicle is described in this paper. Simple hysteresis voltage control is used for DC link voltage regulation. The experimental results are presented to show the working of the proposed converter.
Resumo:
Nanostructured ZnFe2O4 ferrites with different grain sizes were prepared by high energy ball milling for various milling times. Both the average grain size and the root mean square strain were estimated from the x-ray diffraction line broadening. The lattice parameter initially decreases slightly with milling and it increases with further milling. The magnetization is found to increase as the grain size decreases and its large value is attributed to the cation inversion associated with grain size reduction. The Fe-57 Mossbauer spectra were recorded at 300 K and 77 K for the samples with grain sizes of 22 and 11 nm. There is no evidence for the presence of the Fe2+ charge state. At 77 K the Mossbauer spectra consist of a magnetically ordered component along with a doublet due to the superparamagnetic behaviour of small crystalline grains with the superparamagnetic component decreasing with grain size reduction. At 4.2 K the sample with 11 nm grain size displays a magnetically blocked state as revealed by the Mossbauer spectrum. The Mossbauer spectrum of this sample recorded at 10 K in an external magnetic field of 6 T applied parallel to the direction of gamma rays clearly shows ferrimagnetic ordering of the sample. Also, the sample exhibits spin canting with a large canting angle, maybe due to a spin-glass-like surface layer or grain boundary anisotropies in the material.
Resumo:
Slag foaming under dynamic conditions has been studied in laboratory scale to examine the influence of properties commonly used to describe the foaminess and foam stability of slags under steady-state conditions. Synthetically produced slags with compositions relevant to tool steel and stainless steel production were studied through X-ray equipment in measurements simulating the dynamic conditions found in real processes. It is found that the dynamic systems display a more complex behavior than systems Under steady state. Traditional theories for foaming do not seem to be valid for slag foaming under dynamic conditions. The foam displays a fluctuating behavior, which the presently available models are not able to take into account. The concept of a foaming index does not seem to be applicable, resulting in the need for alternative models.
Resumo:
Static magnetization for single crystals of insulating Nd0.85Pb0.15MnO3 and marginally conducting Nd0.70Pb0.30MnO3 has been studied around the ferromagnetic to paramagnetic transition temperature T-C. Results of measurements carried out in the critical range vertical bar(T - T-C)/T-C vertical bar <= 0.1 are reported. Critical exponents beta and gamma for the thermal behaviour of magnetization and susceptibility have been obtained both by modified Arrott plots and the Kouvel-Fisher method. The exponent delta independently obtained from the critical isotherm was found to satisfy the Widom scaling relation delta = gamma/beta + 1. For both compositions the values of exponents are consistent with those expected for isotropic magnets belonging to the Heisenberg universality class with short-range exchange in three dimensions. Correspondingly, the specific heat displays only a cusp-like anomaly at the critical temperature of these crystals which is consistent with an exponent alpha < 0. The results show that the ferromagnetic ordering transition in Nd1-xPbxMnO3 in the composition range 0.15 <= x <= 0.40 is continuous. This mixed-valent manganite displays the conventional properties of a Heisenberg-like ferromagnet, irrespective of the differing transport properties and in spite of low ordering temperatures T-C = 109 and 147.2 K for x = 0.15 and 0.30, respectively.
Resumo:
We have performed a series of magnetic aging experiments on single crystals of Dy0.5Sr0.5MnO3. The results demonstrate striking memory and chaos-like effects in this insulating half-doped perovskite manganite and suggest the existence of strong magnetic relaxation mechanisms of a clustered magnetic state. The spin-glass-like state established below a temperature T-sg approximate to 34 K originates from quenched disorder arising due to the ionic-radii mismatch at the rare earth site. However, deviations from the typical behavior seen in canonical spin glass materials are observed which indicate that the glassy magnetic properties are due to cooperative and frustrated dynamics in a heterogeneous or clustered magnetic state. In particular, the microscopic spin flip time obtained from dynamical scaling near the spin glass freezing temperature is four orders of magnitude larger than microscopic times found in atomic spin glasses. The magnetic viscosity deduced from the time dependence of the zero-field-cooled magnetization exhibits a peak at a temperature T < T-sg and displays a marked dependence on waiting time in zero field.
Resumo:
The queenless ponerine ant Diacamma ceylonense and a population of Diacamma from the Nilgiri hills which we refer to as `nilgiri', exhibit interesting similarities as well as dissimilarities. Molecular phylogenetic study of these morphologically almost similar taxa has shown that D ceylonense is closely related to `nilgiri' and indicates that `nilgiri' is a recent diversion in the Diacamma phylogenetic tree. However, there is a striking behavioural difference in the way reproductive monopoly is maintained by the respective gamergates (mated egg laying workers), and there is evidence that they are genetically differentiated, suggesting a lack of gene flow To develop a better understanding of the mechanism involved in speciation of Diacamma, we have analysed karyotypes of D. ceylonense and `nilgiri' In both, we found surprising inter-individual and intra-individual karyotypic mosaicism. The observed numerical variability, both at intra-individual and inter-individual levels, does not appear to have hampered the sustainability of the chromosomal diversity in each population under study Since the related D. indicum, displays no such intra-individual or inter-Individual variability whatsoever under identical experimental conditions, these results are unlikely to he artifacts. Although no known mechanisms can account for the observed karyotypic variability of this nature, we believe that the present findings on the ants under study would provide opportunities for exciting new discoveries concerning the origin, maintenance and significance of intra-individual and inter-individual karyotypic mosaicism.
Resumo:
The oxidation of liquid Al–Mg–Si alloys at 900–1400 °C was studied by thermogravimetric analysis (TGA). The development of a semi-protective surface layer of MgO/MgAl2O4 allows the continuous formation of an Al2O3-matrix composite containing an interpenetrating network of metal microchannels at 1000–1350 °C. An initial incubation period precedes bulk oxidation, wherein Al2O3 grows from a near-surface alloy layer by reaction of oxygen supplied by the dissolution of the surface oxides and Al supplied from a bulk alloy reservoir through the microchannel network. The typical oxidation rate during bulk growth displays an initial acceleration followed by a parabolic deceleration in a regime apparently limited by Al transport to the near-surface layer. Both regimes may be influenced by the Si content in this layer, which rises due to preferential Al and Mg oxidation. The growth rates increase with temperature to a maximum at ~1300 °C, with a nominal activation energy of 270 kJ/mole for an Al-2.85 wt. % Mg-5.4 wt. % Si alloy in O2 at furnace temperatures of 1000–1300 °C. An oscillatory rate regime observed at 1000–1075 °C resulted in a banded structure of varying Al2O3-to-metal volume fraction.
Resumo:
We have developed CowLog, which is open-source software for recording behaviors from digital video and is easy to use and modify. CowLog tracks the time code from digital video files. The program is suitable for coding any digital video, but the authors have used it in animal research. The program has two main windows: a coding window, which is a graphical user interface used for choosing video files and defining output files that also has buttons for scoring behaviors, and a video window, which displays the video used for coding. The windows can be used in separate displays. The user types the key codes for the predefined behavioral categories, and CowLog transcribes their timing from the video time code to a data file. CowLog comes with an additional feature, an R package called Animal, for elementary analyses of the data files. With the analysis package, the user can calculate the frequencies, bout durations, and total durations of the coded behaviors and produce summary plots from the data.
Resumo:
We have developed CowLog, which is open-source software for recording behaviors from digital video and is easy to use and modify. CowLog tracks the time code from digital video files. The program is suitable for coding any digital video, but the authors have used it in animal research. The program has two main windows: a coding window, which is a graphical user interface used for choosing video files and defining output files that also has buttons for scoring behaviors, and a video window, which displays the video used for coding. The windows can be used in separate displays. The user types the key codes for the predefined behavioral categories, and CowLog transcribes their timing from the video time code to a data file. CowLog comes with an additional feature, an R package called Animal, for elementary analyses of the data files. With the analysis package, the user can calculate the frequencies, bout durations, and total durations of the coded behaviors and produce summary plots from the data.