997 resultados para Vicinal coupling constants
Resumo:
This paper focuses on improving the thermal fatigue resistance on the surface of vermicular cast iron coupling with inserted H13 steel blocks that had different cross sections, by cast-in processing. The microstructure of bionic units was examined by scanning electron microscope. Micro-hardness and thermal fatigue resistance of bionic samples with varied cross sections and spacings were investigated, respectively. Results show that a marked metallurgical bonding zone was produced at interface between the inserted H13 steel block and the parent material - a unique feature of the bionic structure in the vermicular cast iron samples. The micro-hardness of the bionic samples has been significantly improved. Thermal resistance of the samples with the circular cross section was the highest and the bionics sample with spacing of 2 mm spacing had a much longer thermal fatigue life, thus resulting in the improvement for the thermal fatigue life of the bionic samples, due to the efficient preclusion for the generation and propagation of crack at the interface of H13 block and the matrix. Crown Copyright (c) 2010 Published by Elsevier Ltd. All rights reserved.
Resumo:
The coupling mechanism of thermocapillary convection and evaporation effect in evaporating liquids was studied experimentally. The experiments were carried out to study a thin evaporating liquid layer in a rectangular test cell when the upper surface was open to air. By altering the imposed horizontal temperature differences and heights of liquid layers, the average evaporating rate and interfacial temperature profiles were measured. The flow fields were also visualized by PIV method. For comparison, the experiments were repeated by use of another two non-evaporating liquids to study the influence of evaporation effect. The results reveal evidently the role that evaporation effect plays in the coupling with thermocapillary convection.