990 resultados para Veicoli Elettrici Route Planning Mobilità Elettrica
Resumo:
In an approach directed toward a tashironin based complex natural product, efficacy of the singlet oxygen mediated [4+2]-cycloaddition to a tetracyclic cyclopentadiene has been evaluated to install the key cis-1,4-dihydroxy functionality. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
A facile metal-free route of oxidative amination of benzoxazole by activation of C-H bonds with secondary or primary amines in the presence of catalytic iodine in aqueous tert-butyl hydroperoxide proceeds smoothly at ambient temperature under neat reaction condition to furnish the high yield of the aminated product. This user-friendly method to form C-N bonds produces tertiary butanol and water as the byproduct, which are environmentally benign. The application of the methodology is demonsrated by synthesizing therapeutically active benzoxazoles.
Resumo:
Molecular weight and polydispersity are two structural features of hyperbranched polymers that are difficult to control because of the statistical nature of the step-growth polycondensation of AB(2) type monomers; the statistical growth also causes the polydispersity index to increase with percent conversion (or molecular weight). We demonstrate that using controlled amounts of a specifically designed B(3) core, containing B-type functionality that are more reactive than those present in the AB(2) monomer, both the molecular weight and the polydispersity can be readily controlled; the PDI was shown to improve with increasing mole-fraction of the B(3) core while the polymer molecular weight showed an expected decrease. Incorporation of a ``clickable'' propargyl group in the B(3) core unit permitted the generation of a core-functionalizable hyperbranched polymer. Importantly, this clickable core, in combination with a recently developed AB(2) monomer, wherein the B-type groups are allyl ethers and A is an hydroxyl group, led to the generation of a hyperbranched polymer carrying orthogonally functionalizable core and peripheral groups, via a single-step melt polycondensation. Selective functionalization of the core and periphery using two different types of chromophores was achieved, and the occurrence of fluorescence resonance energy transfer (FRET) between the donor and acceptor chromophores was demonstrated.
Resumo:
This paper deals with reducing the waiting times of vehicles at the traffic junctions by synchronizing the traffic signals. Strategies are suggested for betterment of the situation at different time intervals of the day, thus ensuring smooth flow of traffic. The concept of single way systems are also analyzed. The situation is simulated in Witness 2003 Simulation package using various conventions. The average waiting times are reduced by providing an optimal combination for the traffic signal timer. Different signal times are provided for different times of the day, thereby further reducing the average waiting times at specific junctions/roads according to the experienced demands.
Resumo:
Molecular weight and polydispersity are two structural features of hyperbranched polymers that are difficult to control because of the statistical nature of the step-growth polycondensation of AB(2) type monomers; the statistical growth also causes the polydispersity index to increase with percent conversion (or molecular weight). We demonstrate that using controlled amounts of a specifically designed B(3) core, containing B-type functionality that are more reactive than those present in the AB(2) monomer, both the molecular weight and the polydispersity can be readily controlled; the PDI was shown to improve with increasing mole-fraction of the B(3) core while the polymer molecular weight showed an expected decrease. Incorporation of a ``clickable'' propargyl group in the B(3) core unit permitted the generation of a core-functionalizable hyperbranched polymer. Importantly, this clickable core, in combination with a recently developed AB(2) monomer, wherein the B-type groups are allyl ethers and A is an hydroxyl group, led to the generation of a hyperbranched polymer carrying orthogonally functionalizable core and peripheral groups, via a single-step melt polycondensation. Selective functionalization of the core and periphery using two different types of chromophores was achieved, and the occurrence of fluorescence resonance energy transfer (FRET) between the donor and acceptor chromophores was demonstrated.
Resumo:
Electricity appears to be the energy carrier of choice for modern economics since growth in electricity has outpaced growth in the demand for fuels. A decision maker (DM) for accurate and efficient decisions in electricity distribution requires the sector wise and location wise electricity consumption information to predict the requirement of electricity. In this regard, an interactive computer-based Decision Support System (DSS) has been developed to compile, analyse and present the data at disaggregated levels for regional energy planning. This helps in providing the precise information needed to make timely decisions related to transmission and distribution planning leading to increased efficiency and productivity. This paper discusses the design and implementation of a DSS, which facilitates to analyse the consumption of electricity at various hierarchical levels (division, taluk, sub division, feeder) for selected periods. This DSS is validated with the data of transmission and distribution systems of Kolar district in Karnataka State, India.
Resumo:
We have demonstrated the synthesis of light-sensitive polyelectrolyte capsules (PECs) by utilizing a novel polyol reduction method and investigated its applicability as photosensitive drug delivery vehicle. The nanostructured capsules were prepared via layer by layer (LbL) assembly of poly(allylamine hydrochloride) (PAN) and dextran sulfate (DS) on silica particles followed by in-situ synthesis of silver nanoparticles (NPs). Capsules without silver NPs were permeable to low molecular weight (A(w), 479 g/mol) rhodamine but impermeable to higher molecular weight fluorescence labeled dextran (FITC-dextran). However, capsules synthesized with silver NPs showed porous morphology and were permeable to higher molecular weight (M(w) 70 kDa) FITC-dextran also. These capsules were loaded with FITC-dextran using thermal encapsulation method by exploiting temperature induced shrinking of the capsules. During heat treatment the porous morphology of the capsules transformed into smooth pore free structure which prevents the movement of dextran into bulk during the loading process. When these loaded capsules are exposed to laser pulses, the capsule wall ruptured, resulting in the release of the loaded drug/dye. The rupture of the capsules was dependent on particle size, laser pulse energy and exposure time. The release was linear with time when pulse energy of 400 mu J was used and burst release was observed when pulse energy increased to 600 mu J.
Resumo:
How the brain maintains perceptual continuity across eye movements that yield discontinuous snapshots of the world is still poorly understood. In this study, we adapted a framework from the dual-task paradigm, well suited to reveal bottlenecks in mental processing, to study how information is processed across sequential saccades. The pattern of RTs allowed us to distinguish among three forms of trans-saccadic processing (no trans-saccadic processing, trans-saccadic visual processing and trans-saccadic visual processing and saccade planning models). Using a cued double-step saccade task, we show that even though saccade execution is a processing bottleneck, limiting access to incoming visual information, partial visual and motor processing that occur prior to saccade execution is used to guide the next eye movement. These results provide insights into how the oculomotor system is designed to process information across multiple fixations that occur during natural scanning.
Resumo:
Micrometre-scale polypyrrole (PPy) structures are synthesised for electrochemical supercapacitor applications by a facile electrochemical route. Globular polypyrrole microstructures of size < 5 μm are grown on stainless steel (SS-304) substrate by electro-polymerisation of pyrrole on oxygen microbubble templates electrochemically generated and stabilised in the presence of surfactant/supporting electrolyte/ dopant b-naphthalene sulfonic acid (b-NSA). Microstructures obtained with scan range of 0??1.6 V (against Ag/AgCl) are uniformly distributed over the surface with high coverage density of 5 x 105 to 8 x 10 cm-2. Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy revealed that the formed microstructures are of Β-NSA doped PPy. Scanning electron microscopy showed the uniform spread and good coverage of microstructures over the substrate. Supercapacitor properties of PPy films are investigated by cyclic voltammetry, electrochemical impedance spectroscopy and galvanostatic charge/discharge methods with 1.0 M KCl as electrolyte in a three-electrode electrochemical cell. Specific capacitance of 583 Fg-1 is obtained, which is greater than the values (350-400 Fg-1 highest) usually reported for this material. Electrochemical impedance spectroscopy proves the superc
Resumo:
Micrometre-scale polypyrrole (PPy) structures are synthesised for electrochemical supercapacitor applications by a facile electrochemical route. Globular polypyrrole microstructures of size <5 mu m are grown on stainless steel (SS-304) substrate by electro-polymerisation of pyrrole on oxygen microbubble templates electrochemically generated and stabilised in the presence of surfactant/supporting electrolyte/dopant beta-naphthalene sulfonic acid (beta-NSA). Microstructures obtained with scan range of 0-1.6 V (against Ag/AgCl) are uniformly distributed over the surface with high coverage density of 5 x 10(5) to 8 x 10 cm(-2). Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy revealed that the formed microstructures are of beta-NSA doped PPy. Scanning electron microscopy showed the uniform spread and good coverage of microstructures over the substrate. Supercapacitor properties of PPy films are investigated by cyclic voltammetry, electrochemical impedance spectroscopy and galvanostatic charge/discharge methods with 1.0 M KCl as electrolyte in a three-electrode electrochemical cell. Specific capacitance of 583 Fg(-1) is obtained, which is greater than the values (350-400 Fg(-1) highest) usually reported for this material. Electrochemical impedance spectroscopy proves the supercapacitance behaviour and explains the special inductive component of impedance observed in the high-frequency regime because of the globular structures of PPy deposited