985 resultados para Vehicle Standards Costs.
Resumo:
In Walter v Buckeridge [No.5] [2012] WASC 495 Le Miere J considered an application by the defendants for special costs orders under the applicable legislation in Western Australia. Aspects of the decision may be of persuasive value in dealing with similar issues under Queensland legislation.
Resumo:
BACKGROUND: The treatment for deep surgical site infection (SSI) following primary total hip arthroplasty (THA) varies internationally and it is at present unclear which treatment approaches are used in Australia. The aim of this study is to identify current treatment approaches in Queensland, Australia, show success rates and quantify the costs of different treatments. METHODS: Data for patients undergoing primary THA and treatment for infection between January 2006 and December 2009 in Queensland hospitals were extracted from routinely used hospital databases. Records were linked with pathology information to confirm positive organisms. Diagnosis and treatment of infection was determined using ICD-10-AM and ACHI codes, respectively. Treatment costs were estimated based on AR-DRG cost accounting codes assigned to each patient hospital episode. RESULTS: A total of n=114 patients with deep surgical site infection were identified. The majority of patients (74%) were first treated with debridement, antibiotics and implant retention (DAIR), which was successful in eradicating the infection in 60.3% of patients with an average cost of $13,187. The remaining first treatments were 1-stage revision, successful in 89.7% with average costs of $27,006, and 2-stage revisions, successful in 92.9% of cases with average costs of $42,772. Multiple treatments following 'failed DAIR' cost on average $29,560, for failed 1-stage revision were $24,357, for failed 2-stage revision were $70,381 and were $23,805 for excision arthroplasty. CONCLUSIONS: As treatment costs in Australia are high primary prevention is important and the economics of competing treatment choices should be carefully considered. These currently vary greatly across international settings.
Resumo:
Despite its potential multiple contributions to sustainable policy objectives, urban transit is generally not widely used by the public in terms of its market share compared to that of automobiles, particularly in affluent societies with low-density urban forms like Australia. Transit service providers need to attract more people to transit by improving transit quality of service. The key to cost-effective transit service improvements lies in accurate evaluation of policy proposals by taking into account their impacts on transit users. If transit providers knew what is more or less important to their customers, they could focus their efforts on optimising customer-oriented service. Policy interventions could also be specified to influence transit users’ travel decisions, with targets of customer satisfaction and broader community welfare. This significance motivates the research into the relationship between urban transit quality of service and its user perception as well as behaviour. This research focused on two dimensions of transit user’s travel behaviour: route choice and access arrival time choice. The study area chosen was a busy urban transit corridor linking Brisbane central business district (CBD) and the St. Lucia campus of The University of Queensland (UQ). This multi-system corridor provided a ‘natural experiment’ for transit users between the CBD and UQ, as they can choose between busway 109 (with grade-separate exclusive right-of-way), ordinary on-street bus 412, and linear fast ferry CityCat on the Brisbane River. The population of interest was set as the attendees to UQ, who travelled from the CBD or from a suburb via the CBD. Two waves of internet-based self-completion questionnaire surveys were conducted to collect data on sampled passengers’ perception of transit service quality and behaviour of using public transit in the study area. The first wave survey is to collect behaviour and attitude data on respondents’ daily transit usage and their direct rating of importance on factors of route-level transit quality of service. A series of statistical analyses is conducted to examine the relationships between transit users’ travel and personal characteristics and their transit usage characteristics. A factor-cluster segmentation procedure is applied to respodents’ importance ratings on service quality variables regarding transit route preference to explore users’ various perspectives to transit quality of service. Based on the perceptions of service quality collected from the second wave survey, a series of quality criteria of the transit routes under study was quantitatively measured, particularly, the travel time reliability in terms of schedule adherence. It was proved that mixed traffic conditions and peak-period effects can affect transit service reliability. Multinomial logit models of transit user’s route choice were estimated using route-level service quality perceptions collected in the second wave survey. Relative importance of service quality factors were derived from choice model’s significant parameter estimates, such as access and egress times, seat availability, and busway system. Interpretations of the parameter estimates were conducted, particularly the equivalent in-vehicle time of access and egress times, and busway in-vehicle time. Market segmentation by trip origin was applied to investigate the difference in magnitude between the parameter estimates of access and egress times. The significant costs of transfer in transit trips were highlighted. These importance ratios were applied back to quality perceptions collected as RP data to compare the satisfaction levels between the service attributes and to generate an action relevance matrix to prioritise attributes for quality improvement. An empirical study on the relationship between average passenger waiting time and transit service characteristics was performed using the service quality perceived. Passenger arrivals for services with long headways (over 15 minutes) were found to be obviously coordinated with scheduled departure times of transit vehicles in order to reduce waiting time. This drove further investigations and modelling innovations in passenger’ access arrival time choice and its relationships with transit service characteristics and average passenger waiting time. Specifically, original contributions were made in formulation of expected waiting time, analysis of the risk-aversion attitude to missing desired service run in the passengers’ access time arrivals’ choice, and extensions of the utility function specification for modelling passenger access arrival distribution, by using complicated expected utility forms and non-linear probability weighting to explicitly accommodate the risk of missing an intended service and passenger’s risk-aversion attitude. Discussions on this research’s contributions to knowledge, its limitations, and recommendations for future research are provided at the concluding section of this thesis.
Resumo:
Vehicular accidents are one of the deadliest safety hazards and accordingly an immense concern of individuals and governments. Although, a wide range of active autonomous safety systems, such as advanced driving assistance and lane keeping support, are introduced to facilitate safer driving experience, these stand-alone systems have limited capabilities in providing safety. Therefore, cooperative vehicular systems were proposed to fulfill more safety requirements. Most cooperative vehicle-to-vehicle safety applications require relative positioning accuracy of decimeter level with an update rate of at least 10 Hz. These requirements cannot be met via direct navigation or differential positioning techniques. This paper studies a cooperative vehicle platform that aims to facilitate real-time relative positioning (RRP) among adjacent vehicles. The developed system is capable of exchanging both GPS position solutions and raw observations using RTCM-104 format over vehicular dedicated short range communication (DSRC) links. Real-time kinematic (RTK) positioning technique is integrated into the system to enable RRP to be served as an embedded real-time warning system. The 5.9 GHz DSRC technology is adopted as the communication channel among road-side units (RSUs) and on-board units (OBUs) to distribute GPS corrections data received from a nearby reference station via the Internet using cellular technologies, by means of RSUs, as well as to exchange the vehicular real-time GPS raw observation data. Ultimately, each receiving vehicle calculates relative positions of its neighbors to attain a RRP map. A series of real-world data collection experiments was conducted to explore the synergies of both DSRC and positioning systems. The results demonstrate a significant enhancement in precision and availability of relative positioning at mobile vehicles.
Resumo:
Medical research represents a substantial departure from conventional medical care. Medical care is patient-orientated, with decisions based on the best interests and/or wishes of the person receiving the care. In contrast, medical research is future-directed. Primarily it aims to contribute new knowledge about illness or disease, or new knowledge about interventions, such as drugs, that impact upon some human condition. Current State and Territory laws and research ethics guidelines in Australia relating to the review of medical research appropriately acknowledge that the functions of medical care and medical research differ. Prior to a medical research project commencing, the study must be reviewed and approved by a Human Research Ethics Committee (HREC). For medical research involving incompetent adults, some jurisdictions require an additional, independent safeguard by way of tribunal or court approval of medical research protocols. This extra review process reflects the uncertainty of medical research involvement, and the difficulties surrogate decision-makers of incompetent adults face in making decisions about others, and deliberating about the risks and benefits of research involvement. Parents of children also face the same difficulties when making decisions about their child’s research involvement. However, unlike the position concerning incompetent adults, there are no similar safeguards under Australian law in relation to the approval of medical research involving children. This column questions why this discrepancy exists with a view to generating further dialogue on the topic.
Resumo:
In this paper, problems are described which are related to the ergonomic assessment of vehicle package design in vehicle systems engineering. The traditional approach, using questionnaire techniques for a subjective assessment of comfort related to package design, is compared to a biomechanical approach. An example is given for ingress design. The biomechanical approach is based upon objective postural data. The experimental setup for the study is described and methods used for the biomechanical analysis are explained. Because the biomechanic assessment requires not only a complex experimental setup but also time consuming data processing, a systematic reduction and preparation of biomechanic data for classification with an Artificial Neural Network significantly improves the economy of the biomechanical method.
Resumo:
Background Standard operating procedures state that police officers should not drive while interacting with their mobile data terminal (MDT) which provides in-vehicle information essential to police work. Such interactions do however occur in practice and represent a potential source of driver distraction. The MDT comprises visual output with manual input via touch screen and keyboard. This study investigated the potential for alternative input and output methods to mitigate driver distraction with specific focus on eye movements. Method Nineteen experienced drivers of police vehicles (one female) from the NSW Police Force completed four simulated urban drives. Three drives included a concurrent secondary task: imitation licence plate search using an emulated MDT. Three different interface methods were examined: Visual-Manual, Visual-Voice, and Audio-Voice (“Visual” and “Audio” = output modality; “Manual” and “Voice” = input modality). During each drive, eye movements were recorded using FaceLAB™ (Seeing Machines Ltd, Canberra, ACT). Gaze direction and glances on the MDT were assessed. Results The Visual-Voice and Visual-Manual interfaces resulted in a significantly greater number of glances towards the MDT than Audio-Voice or Baseline. The Visual-Manual and Visual-Voice interfaces resulted in significantly more glances to the display than Audio-Voice or Baseline. For longer duration glances (>2s and 1-2s) the Visual-Manual interface resulted in significantly more fixations than Baseline or Audio-Voice. The short duration glances (<1s) were significantly greater for both Visual-Voice and Visual-Manual compared with Baseline and Audio-Voice. There were no significant differences between Baseline and Audio-Voice. Conclusion An Audio-Voice interface has the greatest potential to decrease visual distraction to police drivers. However, it is acknowledged that an audio output may have limitations for information presentation compared with visual output. The Visual-Voice interface offers an environment where the capacity to present information is sustained, whilst distraction to the driver is reduced (compared to Visual-Manual) by enabling adaptation of fixation behaviour.
Resumo:
Portable water-filled road barriers (PWFB) are roadside structures placed on temporary construction zones to separate work site from moving traffic. Recent changes in governing standards require PWFB to adhere to strict compliance in terms of lateral displacement of the road barriers and vehicle redirectionality. Actual road safety barrier test can be very costly, thus researchers resort to Finite Element Analysis (FEA) in the initial designs phase prior to real vehicle test. There has been many research conducted on concrete barriers and flexible steel barriers using FEA, however not many is done pertaining to PWFB. This research probes a new method to model joint mechanism in PWFB. Two methods to model the joining mechanism are presented and discussed in relation to its practicality and accuracy to real work applications. Moreover, the study of the physical gap and mass of the barrier was investigated. Outcome from this research will benefit PWFB research and allow road barrier designers better knowledge in developing the next generation of road safety structures.
Resumo:
The Vehicle-to-Grid (V2G) concept is based on the newly developed and marketed technologies of hybrid petrol-electric vehicles, most notably represented by the Toyota Prius, in combination with significant structural changes to the world's energy economy, and the growing strain on electricity networks. The work described in this presentation focuses on the market and economic impacts of grid connected vehicles. We investigate price reduction effects and transmission system expansion cost reduction. We modelled a large numbers of plug-in-hybrid vehicle batteries by aggregating them into a virtual pumped-storage power station at the Australian national electricity market's (NEM) region level. The virtual power station concept models a centralised control for dispatching (operating) the aggregated electricity supply/demand capabilities of a large number of vehicles and their batteries. The actual level of output could be controlled by human or automated agents to either charge or discharge from/into the power grid. As previously mentioned the impacts of widespread deployments of this technology are likely to be economic, environmental and physical.
Resumo:
There are many variables to consider in the design of an electric motor. However, meeting the performance requirements for an electric vehicle drive may cause a designer to loose focus on its typical operation and hence fail to optimise the motor in the region where it processes the most power. This paper investigates operating requirements of electric vehicle motor drives using the University concept vehicle as an example. The paper outlines a methodology for determining primary operating region of a vehicle drive. The methodology is applied to standard driving cycles that are commonly used in the design and testing of vehicles.
Resumo:
An ironless motor for use as direct wheel drive is presented. The motor is intended for use in a lightweight (600kg), low drag, series hybrid commuter vehicle under development at The University of Queensland. The vehicle will utilise these ironless motors in each of its rear wheels, with each motor producing a peak torque output of 500Nm and a maximum rotational speed of 1500rpm. The axial flux motor consists of twin Ironless litz wire stators with a central magnetic ring and simplified Halbach magnet arrays on either side. A small amount of iron is used to support the outer Halbach arrays and to improve the peak magnetic flux density. Ducted air cooling is used to remove heat from the motor and will allow for a continuous torque rating of 250Nm. Ironless machines have previously been shown to be effective in high speed, high frequency applications (+1000Hz). They are generally regarded as non-optimal for low speed applications as iron cores allow for better magnet utilisation and do not significantly increase the weight of a machine. However, ironless machines can also be seen to be effective in applications where the average torque requirement is much lower than the peak torque requirement such as in some vehicle drive applications. The low spinning losses in ironless machines are shown to result in very high energy throughput efficiency in a wide range of vehicle driving cycles.
Resumo:
Investigates the braking performance requirements of the UltraCommuter, a lightweight series hybrid electric vehicle currently under development at the University of Queensland. With a predicted vehicle mass of 600 kg and two in-wheel motors each capable of 500 Nm of peak torque, decelerations up to 0.46 g are theoretically possible using purely regenerative braking. With 99% of braking demands less than 0.35 g, essentially all braking can be regenerative. The wheel motors have sufficient peak torque capability to lock the rear wheels in combination with front axle braking, eliminating the need for friction braking at the rear. Emergency braking levels approaching 1 g are achieved by supplementation with front disk brakes. This paper presents equations describing the peak front and rear axle braking forces which occur under straight line braking, including gradients. Conventionally, to guarantee stability, mechanical front/rear proportioning of braking effort ensures that the front axle locks first. In this application, all braking is initially regenerative at the rear, and an adaptive ''by-wire'' proportioning system presented ensures this stability requirement is still satisfied. Front wheel drive and all wheel drive systems are also discussed. Finally, peak and continuous performance measures, not commonly provided for friction brakes, are derived for the UltraCommuter's motor capability and range of operation.
Resumo:
The University of Queensland UltraCommuter project is the demonstration of an ultra-light weight, low drag, energy efficient and low polluting, electric commuter vehicle equipped with a 2.5m2 on-board solar array. A key goal of the project is to make the vehicle predominantly self-sufficient from solar power for normal driving purposes , so that it does not require charging or refuelling from off-board sources. This paper examines the technical feasibility of the solar-powered commuter vehicle concept, as it applies the UltraCommuter project. A parametric description of a solar-powered commuter vehicle is presented. Real solar insolation data is then used to predict the solar driving range for the UltraCommuter and this is compared to typical urban usage patterns for commuter vehicles in Queensland. A comparative analysis of annual greenhouse gas emissions from the vehicle is also presented. The results show that the UltraCommuter’s on-board solar array can provide substantial supplementation of the energy required for normal driving, powering 90% of annual travel needs for an average QLD passenger vehicle. The vehicle also has excellent potential to reduce annual greenhouse gas emissions from the private transport sector, achieving a 98% reduction in CO2 emissions when compared to the average QLD passenger vehicle. Lastly, the vehicle battery pack provides for tolerance to consecutive days of poor weather without resorting to grid charging, giving uninterrupted functionality to the user. These results hold great promise for the technical feasibility of the solar-powered commuter vehicle concept.
Resumo:
The key to reducing cost of electric vehicles is integration. All too often systems such as the motor, motor controller, batteries and vehicle chassis/body are considered as separate problems. The truth is that a lot of trade-offs can be made between these systems, causing an overall improvement in many areas including total cost. Motor controller and battery cost have a relatively simple relationship; the less energy lost in the motor controller the less energy that has to be carried in the batteries, hence the lower the battery cost. A motor controller’s cost is primarily influenced by the cost of the switches. This paper will therefore present a method of assessing the optimal switch selection on the premise that the optimal switch is the one that produces the lowest system cost, where system cost is the cost of batteries + switches.