938 resultados para Unit cell dimension
Resumo:
A novel colorimetric probe 1 based on the picolyl moiety has been designed and synthesized. Probe 1 is composed of a pyrene and a bispicolyl amine (BPA) unit, in which the BPA moiety acts as a binding unit and the binding phenomenon is sensed from the changes in the signaling subunit. The probe detects Cu2+ specifically in water and both Cu2+ and Hg2+ efficiently in neutral Brij-58 micellar media. The probe shows a color change visible to the naked eye upon addition of metal ions. Notably, in a micellar medium, probe 1 can detect both the Cu2+ and Hg2+ ions even at parts-per-billion levels. Furthermore, the probe shows ratiometric detection of both the metal ions making the sensing quantitative. The two metal ions could be discriminated both visibly under a UV lamp and with the use of fluorescence spectroscopy. The probe could be also used in biological cell lines for the detection of both Hg2+ and Cu2+ ions.
Resumo:
The local fast-spiking interneurons (FSINs) are considered to be crucial for the generation, maintenance, and modulation of neuronal network oscillations especially in the gamma frequency band. Gamma frequency oscillations have been associated with different aspects of behavior. But the prolonged effects of gamma frequency synaptic activity on the FSINs remain elusive. Using whole cell current clamp patch recordings, we observed a sustained decrease of intrinsic excitability in the FSINs of the dentate gyrus (DG) following repetitive stimulations of the mossy fibers at 30 Hz (gamma bursts). Surprisingly, the granule cells (GCs) did not express intrinsic plastic changes upon similar synaptic excitation of their apical dendritic inputs. Interestingly, pairing the gamma bursts with membrane hyperpolarization accentuated the plasticity in FSINs following the induction protocol, while the plasticity attenuated following gamma bursts paired with membrane depolarization. Paired pulse ratio measurement of the synaptic responses did not show significant changes during the experiments. However, the induction protocols were accompanied with postsynaptic calcium rise in FSINs. Interestingly, the maximum and the minimum increase occurred during gamma bursts with membrane hyperpolarization and depolarization respectively. Including a selective blocker of calcium-permeable AMPA receptors (CP-AMPARs) in the bath; significantly attenuated the calcium rise and blocked the membrane potential dependence of the calcium rise in the FSINs, suggesting their involvement in the observed phenomenon. Chelation of intracellular calcium, blocking HCN channel conductance or blocking CP-AMPARs during the experiment forbade the long lasting expression of the plasticity. Simultaneous dual patch recordings from FSINs and synaptically connected putative GCs confirmed the decreased inhibition in the GCs accompanying the decreased intrinsic excitability in the FSINs. Experimentally constrained network simulations using NEURON predicted increased spiking in the GC owing to decreased input resistance in the FSIN. We hypothesize that the selective plasticity in the FSINs induced by local network activity may serve to increase information throughput into the downstream hippocampal subfields besides providing neuroprotection to the FSINs. (c) 2014 Wiley Periodicals, Inc.
Resumo:
Statins are known to modulate cell surface cholesterol (CSC) and AMP-activated protein kinase (AMPK) in nonneural cells; however no study demonstrates whether CSC and AMPK may regulate simvastatin induced neuritogenesis (SIN). We found that simvastatin (SIM) maintains CSC as shown by Fillipin III staining, Flotillin-2 protein expression / localization and phosphorylation of various receptor tyrosine kinases (RTKs) in the plasma membrane. Modulation of CSC revealed that SIN is critically dependent on this CSC. Simultaneously, phospho array for mitogen activated protein kinases (MAPKs) revealed PI3K / Akt as intracellular pathway which modulates lipid pathway by inhibiting AMPK activation. Though, SIM led to a transient increase in AMPK phosphorylation followed by a sudden decline; the effect was independent of PI3K. Strikingly, AMPK phosphorylation was regulated by protein phosphatase 2A (PP2A) activity which was enhanced upon SIM treatment as evidenced by increase in threonine phosphorylation. Moreover, it was observed that addition of AMP analogue and PP2A inhibitor inhibited SIN. Biocomposition of neurites shows that lipids form a major part of neurites and AMPK is known to regulate lipid metabolism majorly through acetyl CoA carboxylase (ACC). AMPK activity is negative regulator of ACC activity and we found that phosphorylation of ACC started to decrease after 6 hrs which becomes more pronounced at 12 hrs. Addition of ACC inhibitor showed that SIN is dependent on ACC activity. Simultaneously, addition of Fatty acid synthase (FAS) inhibitor confirmed that endogenous lipid pathway is important for SIN. We further investigated SREBP-1 pathway activation which controls ACC and FAS at transcriptional level. However, SIM did not affect SREBP-1 processing and transcription of its target genes likes ACC1 and FAS. In conclusion, this study highlights a distinct role of CSC and ACC in SIN which might have implication in process of neuronal differentiation induced by other agents.
Resumo:
We have identified a potent antibacterial agent N-(4-sec-butylphenyl)-2-(thiophen-2-yl)-1H-benzod]imidazole-4-carboxa mide (BT-benzo-29) from a library of benzimidazole derivatives that stalled bacterial division by inhibiting FtsZ assembly. A short (5 min) exposure of BT-benzo-29 disassembled the cytokinetic Z-ring in Bacillus subtilis cells without affecting the cell length and nucleoids. BT-benzo-29 also perturbed the localization of early and late division proteins such as FtsA, ZapA and SepF at the mid-cell. Further, BT-benzo-29 bound to FtsZ with a dissociation constant of 24 +/- 3 m and inhibited the assembly and GTPase activity of purified FtsZ. A docking analysis suggested that BT-benzo-29 may bind to FtsZ at the C-terminal domain near the T7 loop. BT-benzo-29 displayed significantly weaker inhibitory effects on the assembly and GTPase activity of two mutants (L272A and V275A) of FtsZ supporting the prediction of the docking analysis. Further, BT-benzo-29 did not appear to inhibit DNA duplication and nucleoid segregation and it did not perturb the membrane potential of B. subtilis cells. The results suggested that BT-benzo-29 exerts its potent antibacterial activity by inhibiting FtsZ assembly. Interestingly, BT-benzo-29 did not affect the membrane integrity of mammalian red blood cells. BT-benzo-29 bound to tubulin with a much weaker affinity than FtsZ and exerted significantly weaker effects on mammalian cells than on the bacterial cells indicating that the compound may have a strong antibacterial potential.
Resumo:
The alarmone (p)ppGpp regulates transcription, translation, replication, virulence, lipid synthesis, antibiotic sensitivity, biofilm formation, and other functions in bacteria. Signaling nucleotide cyclic di-GMP (c-di-GMP) regulates biofilm formation, motility, virulence, the cell cycle, and other functions. In Mycobacterium smegmatis, both (p) ppGpp and c-di-GMP are synthesized and degraded by bifunctional proteins Rel(Msm) and DcpA, encoded by rel(Msm) and dcpA genes, respectively. We have previously shown that the Delta rel(Msm) and Delta dcpA knockout strains are antibiotic resistant and defective in biofilm formation, show altered cell surface properties, and have reduced levels of glycopeptidolipids and polar lipids in their cell wall (K. R. Gupta, S. Kasetty, and D. Chatterji, Appl Environ Microbiol 81:2571-2578, 2015, http://dx.doi.org/10.1128/AEM.03999-14). In this work, we have explored the phenotypes that are affected by both (p) ppGpp and c-di-GMP in mycobacteria. We have shown that both (p) ppGpp and c-di-GMP are needed to maintain the proper growth rate under stress conditions such as carbon deprivation and cold shock. Scanning electron microscopy showed that low levels of these second messengers result in elongated cells, while high levels reduce the cell length and embed the cells in a biofilm-like matrix. Fluorescence microscopy revealed that the elongated Delta rel(Msm) and Delta dcpA cells are multinucleate, while transmission electron microscopy showed that the elongated cells are multiseptate. Gene expression analysis also showed that genes belonging to functional categories such as virulence, detoxification, lipid metabolism, and cell-wall-related processes were differentially expressed. Our results suggests that both (p) ppGpp and c-di-GMP affect some common phenotypes in M. smegmatis, thus raising a possibility of cross talk between these two second messengers in mycobacteria. IMPORTANCE Our work has expanded the horizon of (p) ppGpp and c-di-GMP signaling in Gram-positive bacteria. We have come across a novel observation that M. smegmatis needs (p) ppGpp and c-di-GMP for cold tolerance. We had previously shown that the Delta rel(Msm) and Delta dcpA strains are defective in biofilm formation. In this work, the overproduction of (p) ppGpp and c-di-GMP encased M. smegmatis in a biofilm-like matrix, which shows that both (p) ppGpp and c-di-GMP are needed for biofilm formation. The regulation of cell length and cell division by (p) ppGpp was known in mycobacteria, but our work shows that c-di-GMP also affects the cell size and cell division in mycobacteria. This is perhaps the first report of c-di-GMP regulating cell division in mycobacteria.
Resumo:
Selectin/ligand interactions initiate the multistep adhesion and signaling cascades in the recruitment of leukocytes from circulation to inflamed tissues and may also play a role in tumor metastasis. Kinetic properties of these interactions are essential determinants governing blood-borne cells' tethering to and rolling on the vessel wall. Extending our recently developed micropipette method, we have measured the kinetic rates of E-selectin/ligand interactions. Red cells coated with an E-selectin construct were allowed to bind HL-60 or Colo-205 cells bearing carbohydrate ligands. Specific adhesions were observed to occur at isolated points, the frequency of which followed a Poisson distribution. These point attachments were formed at the same rate with both the HL-60 and Colo-205 cells (0.14 +/- 0.04 and 0.13 +/- 0.03 mum(2) s(-1) per unit density of E-selectin, respectively) but dissociated from the former at a rate twice as fast as did from the latter (0.92 +/- 0.23 and 0.44 +/- 0.10 s(-1), respectively). The reverse rates agree well with those measured by the flow chamber. The forward rates are orders of magnitude higher than those of Fc gamma receptors interacting with IgG measured under similar conditions, consistent with the rapid kinetics requirement for the function of E-selectin/ligand binding, which is to capture leukocytes on endothelial surfaces from flow.
Resumo:
Cell adhesion is crucial to many biological processes, such as inflammatory responses, tumor metastasis and thrombosis formation. Recently a commercial surface plasmon resonance (SPR)-based BIAcore biosensor has been extended to determine cell binding mediated by surface-bound biomolecular interactions. How such cell binding is quantitatively governed by kinetic rates and regulating factors, however, has been poorly understood. Here we developed a novel assay to determine the binding kinetics of surface-bound biomolecular interactions using a commercial BIAcore 3000 biosensor. Human red blood cells (RBCs) presenting blood group B antigen and CM5 chip bearing immobilized anti-B monoclonal antibody (mAb) were used to obtain the time courses of response unit, or sensorgrams, when flowing RBCs over the chip surface. A cellular kinetic model was proposed to correlate the sensorgrams with kinetic rates. Impacts of regulating factors, such as cell concentration, flow duration and rate, antibody-presenting level, as well as pH value and osmotic pressure of suspending medium were tested systematically, which imparted the confidence that the approach can be applied to kinetic measurements of cell adhesion mediated by surface-bound biomolecular interactions. These results provided a new insight into quantifying cell binding using a commercial SPR-based BIAcore biosensor.
Resumo:
Cell culture and growth in space is crucial to understand the cellular responses under microgravity. The effects of microgravity were coupled with such environment restrictions as medium perfusion, in which the underlying mechanism has been poorly understood. In the present work, a customer-made counter sheet-flow sandwich cell culture device was developed upon a biomechanical concept from fish gill breathing. The sandwich culture unit consists of two side chambers where the medium flow is counter-directional, a central chamber where the cells are cultured, and two porous polycarbonate membranes between side and central chambers. Flow dynamics analysis revealed the symmetrical velocity profile and uniform low shear rate distribution of flowing medium inside the central culture chamber, which promotes sufficient mass transport and nutrient supply for mammalian cell growth. An on-orbit experiment performed on a recovery satellite was used to validate the availability of the device.
Resumo:
Micro-fabrication technology has substantial potential for identifying molecular markers expressed on the surfaces of tissue cells and viruses. It has been found in several conceptual prototypes that cells with such markers are able to be captured by their antibodies immobilized on microchannel substrates and unbound cells are flushed out by a driven flow. The feasibility and reliability of such a microfluidic-based assay, however, remains to be further tested. In the current work, we developed a microfluidic-based system consisting of a microfluidic chip, an image grabbing unit, data acquisition and analysis software, as well as a supporting base. Specific binding of CD59-expressed or BSA-coupled human red blood cells (RBCs) to anti-CD59 or anti-BSA antibody-immobilized chip surfaces was quantified by capture efficiency and by the fraction of bound cells. Impacts of respective flow rate, cell concentration, antibody concentration and site density were tested systematically. The measured data indicated that the assay was robust. The robustness was further confirmed by capture efficiencies measured from an independent ELISA-based cell binding assay. These results demonstrated that the system developed provided a new platform to effectively quantify cellular surface markers effectively, which promoted the potential applications in both biological studies and clinical diagnoses.
Resumo:
Let E be a compact subset of the n-dimensional unit cube, 1n, and let C be a collection of convex bodies, all of positive n-dimensional Lebesgue measure, such that C contains bodies with arbitrarily small measure. The dimension of E with respect to the covering class C is defined to be the number
dC(E) = sup(β:Hβ, C(E) > 0),
where Hβ, C is the outer measure
inf(Ʃm(Ci)β:UCi Ↄ E, Ci ϵ C) .
Only the one and two-dimensional cases are studied. Moreover, the covering classes considered are those consisting of intervals and rectangles, parallel to the coordinate axes, and those closed under translations. A covering class is identified with a set of points in the left-open portion, 1’n, of 1n, whose closure intersects 1n - 1’n. For n = 2, the outer measure Hβ, C is adopted in place of the usual:
Inf(Ʃ(diam. (Ci))β: UCi Ↄ E, Ci ϵ C),
for the purpose of studying the influence of the shape of the covering sets on the dimension dC(E).
If E is a closed set in 11, let M(E) be the class of all non-decreasing functions μ(x), supported on E with μ(x) = 0, x ≤ 0 and μ(x) = 1, x ≥ 1. Define for each μ ϵ M(E),
dC(μ) = lim/c → inf/0 log ∆μ(c)/log c , (c ϵ C)
where ∆μ(c) = v/x (μ(x+c) – μ(x)). It is shown that
dC(E) = sup (dC(μ):μ ϵ M(E)).
This notion of dimension is extended to a certain class Ӻ of sub-additive functions, and the problem of studying the behavior of dC(E) as a function of the covering class C is reduced to the study of dC(f) where f ϵ Ӻ. Specifically, the set of points in 11,
(*) {dB(F), dC(f)): f ϵ Ӻ}
is characterized by a comparison of the relative positions of the points of B and C. A region of the form (*) is always closed and doubly-starred with respect to the points (0, 0) and (1, 1). Conversely, given any closed region in 12, doubly-starred with respect to (0, 0) and (1, 1), there are covering classes B and C such that (*) is exactly that region. All of the results are shown to apply to the dimension of closed sets E. Similar results can be obtained when a finite number of covering classes are considered.
In two dimensions, the notion of dimension is extended to the class M, of functions f(x, y), non-decreasing in x and y, supported on 12 with f(x, y) = 0 for x · y = 0 and f(1, 1) = 1, by the formula
dC(f) = lim/s · t → inf/0 log ∆f(s, t)/log s · t , (s, t) ϵ C
where
∆f(s, t) = V/x, y (f(x+s, y+t) – f(x+s, y) – f(x, y+t) + f(x, t)).
A characterization of the equivalence dC1(f) = dC2(f) for all f ϵ M, is given by comparison of the gaps in the sets of products s · t and quotients s/t, (s, t) ϵ Ci (I = 1, 2).
Resumo:
Systems-level studies of biological systems rely on observations taken at a resolution lower than the essential unit of biology, the cell. Recent technical advances in DNA sequencing have enabled measurements of the transcriptomes in single cells excised from their environment, but it remains a daunting technical problem to reconstruct in situ gene expression patterns from sequencing data. In this thesis I develop methods for the routine, quantitative in situ measurement of gene expression using fluorescence microscopy.
The number of molecular species that can be measured simultaneously by fluorescence microscopy is limited by the pallet of spectrally distinct fluorophores. Thus, fluorescence microscopy is traditionally limited to the simultaneous measurement of only five labeled biomolecules at a time. The two methods described in this thesis, super-resolution barcoding and temporal barcoding, represent strategies for overcoming this limitation to monitor expression of many genes in a single cell. Super-resolution barcoding employs optical super-resolution microscopy (SRM) and combinatorial labeling via-smFISH (single molecule fluorescence in situ hybridization) to uniquely label individual mRNA species with distinct barcodes resolvable at nanometer resolution. This method dramatically increases the optical space in a cell, allowing a large numbers of barcodes to be visualized simultaneously. As a proof of principle this technology was used to study the S. cerevisiae calcium stress response. The second method, sequential barcoding, reads out a temporal barcode through multiple rounds of oligonucleotide hybridization to the same mRNA. The multiplexing capacity of sequential barcoding increases exponentially with the number of rounds of hybridization, allowing over a hundred genes to be profiled in only a few rounds of hybridization.
The utility of sequential barcoding was further demonstrated by adapting this method to study gene expression in mammalian tissues. Mammalian tissues suffer both from a large amount of auto-fluorescence and light scattering, making detection of smFISH probes on mRNA difficult. An amplified single molecule detection technology, smHCR (single molecule hairpin chain reaction), was developed to allow for the quantification of mRNA in tissue. This technology is demonstrated in combination with light sheet microscopy and background reducing tissue clearing technology, enabling whole-organ sequential barcoding to monitor in situ gene expression directly in intact mammalian tissue.
The methods presented in this thesis, specifically sequential barcoding and smHCR, enable multiplexed transcriptional observations in any tissue of interest. These technologies will serve as a general platform for future transcriptomic studies of complex tissues.
Resumo:
A new approach is proposed to simulate splash erosion on local soil surfaces. Without the effect of wind and other raindrops, the impact of free-falling raindrops was considered as an independent event from the stochastic viewpoint. The erosivity of a single raindrop depending on its kinetic energy was computed by an empirical relationship in which the kinetic energy was expressed as a power function of the equivalent diameter of the raindrop. An empirical linear function combining the kinetic energy and soil shear strength was used to estimate the impacted amount of soil particles by a single raindrop. Considering an ideal local soil surface with size of I m x I m, the expected number of received free-failing raindrops with different diameters per unit time was described by the combination of the raindrop size distribution function and the terminal velocity of raindrops. The total splash amount was seen as the sum of the impact amount by all raindrops in the rainfall event. The total splash amount per unit time was subdivided into three different components, including net splash amount, single impact amount and re-detachment amount. The re-detachment amount was obtained by a spatial geometric probability derived using the Poisson function in which overlapped impacted areas were considered. The net splash amount was defined as the mass of soil particles collected outside the splash dish. It was estimated by another spatial geometric probability in which the average splashed distance related to the median grain size of soil and effects of other impacted soil particles and other free-falling raindrops were considered. Splash experiments in artificial rainfall were carried out to validate the availability and accuracy of the model. Our simulated results suggested that the net splash amount and re-detachment amount were small parts of the total splash amount. Their proportions were 0.15% and 2.6%, respectively. The comparison of simulated data with measured data showed that this model could be applied to simulate the soil-splash process successfully and needed information of the rainfall intensity and original soil properties including initial bulk intensity, water content, median grain size and some empirical constants related to the soil surface shear strength, the raindrop size distribution function and the average splashed distance. Copyright (c) 2007 John Wiley & Sons, Ltd.
Resumo:
We report a high molar extinction coefficient organic sensitizer for high efficiency dye-sensitized solar cells. In combination with a solvent-free ionic liquid electrolyte, we have demonstrated a similar to 7% cell showing an excellent stability measured under the thermal and light soaking dual stress. This is expected to have an important practical consequence on the production of flexible, low-cost, and lightweight DSC based on plastic matrix.
Resumo:
The characteristics of a compact plate-fin reformer (PFR) which integrates endothermic and exothermic reactions into one unit have been investigated by experiment as well as by numerical simulation. One reforming chamber was integrated with two vaporization chambers and two combustion chambers to constitute a single unit of PFR. In the PFR, which is based on a plate-fin beat exchanger, catalytic combustion of the reforming gas is used to simulate the fuel cell anode off gas (AOG) which supplies the necessary heat for the methanol steam reforming. Temperature distributions in all chambers and composition distribution in reforming chamber have been studied, and the effect of the ratio of H2O/CH3OH on the performance of the PFR has also been investigated. A model of the PFR was derived using a three-dimensional numerical model for a cross-current flow arrangement. Theoretical predictions of the temperature distributions in the PFR were in good agreement with experimental values. In addition, the numerical model was able to accurately predict the methanol conversion and the reformate composition in reforming chamber. © 2005 Elsevier B.V. All rights reserved.