849 resultados para Undisciplined in first cycle
Resumo:
Anchitherine horses are a subfamily of equids that are abundantly represented in the late Eocene and early Oligocene of North America. This group has been heavily studied in the past, but important questions still remain. Some studies have focused on the Eocene-Oligocene boundary and have used these equids along with other taxa to study mammalian diet and climate change through this interval. I reexamine two anchitherine genera, Mesohippus and Miohippus, from stratigraphic sequences of the White River Group in western Nebraska and southwestern South Dakota. These sequences span the Chadronian (late Eocene), Orellan (early Oligocene), and Whitneyan (early Oligocene) North American land-mammal ages. The most recent revision of these genera was done by Prothero and Shubin (1989). I review the characters used for taxonomic identification. This includes characters such as the hypostyle, the articular facet on the third metatarsal, and dental dimensions. To avoid possible biases caused by combining specimens from different stratigraphic levels, specimens were separated by location and stratigraphic level. The length and width of cheek teeth, and tooth rows were measured on 488 specimens. First molar area serves as a proxy for body mass in horses and other mammals, and can be useful for distinguishing among species. Results indicate that the characters used by Prothero and Shubin were highly variable in anchitherine horses and are not useful for distinguishing between these genera. The development of the articular facet on the third metatarsal may be a function of body size and therefore may be of no more utility than first molar area. Variability in first molar area suggests the presence of three species in the medial and late Chadronian, two species in the Orellan, and at least two species in the Whitneyan. Due to a lack of objective criteria separating Mesohippus from Miohippus, I recommend synonymy of these genera, making Mesohippus a junior subjective synonym.
Resumo:
Background: Fibroblast growth factor receptor 4 (FGFR4) is a member of a receptor tyrosine kinase family of enzymes involved in cell cycle control and proliferation. A common single nucleotide polymorphism (SNP) Gly388Arg variant has been associated with increased tumor cell motility and progression of breast cancer, head and neck cancer and soft tissue sarcomas. The present study evaluated the prognostic significance of FGFR4 in oral and oropharynx carcinomas, finding an association of FGFR4 expression and Gly388Arg genotype with tumor onset and prognosis. Patients and Methods: DNA from peripheral blood of 122 patients with oral and oropharyngeal squamous cell carcinomas was used to determine FGFR4 genotype by PCR-RFLP. Protein expression was assessed by immunohistochemistry (IHC) on paraffin-embedded tissue microarrays. Results: Presence of allele Arg388 was associated with lymphatic embolization and with disease related premature death. In addition, FGFR4 low expression was related with lymph node positivity and premature relapse of disease, as well as disease related death. Conclusion: Our results propose FGFR4 profile, measured by the Gly388Arg genotype and expression, as a novel marker of prognosis in squamous cell carcinoma of the mouth and oropharynx.
Resumo:
Traditional abduction imposes as a precondition the restriction that the background information may not derive the goal data. In first-order logic such precondition is, in general, undecidable. To avoid such problem, we present a first-order cut-based abduction method, which has KE-tableaux as its underlying inference system. This inference system allows for the automation of non-analytic proofs in a tableau setting, which permits a generalization of traditional abduction that avoids the undecidable precondition problem. After demonstrating the correctness of the method, we show how this method can be dynamically iterated in a process that leads to the construction of non-analytic first-order proofs and, in some terminating cases, to refutations as well.
Resumo:
The purpose of this randomized non-controlled study was to determine the effect of an aerobic or resistance exercise protocol on performance of activities of daily living in elderly women. The sample was constituted of 41 apparently healthy elderly women aged 60 to 85 years (x: 65.1 +/- 7.9 years) randomly assigned in resistance exercise (n: 22) or aerobic groups (n: 19). The resistance exercise protocol consisted of three sets of eight to 12 repetitions at 60% of one repetition maximum test for the leg press 45 degrees. The aerobic exercise protocol consisted in cycling in a cycle ergometer during 40 minutes at 60% of reserve heart rate. Both protocols were performed three times per week during five weeks. Activities of daily living were estimated by velocity to stand from sitting to standing position (VSitting), velocity to move from supine to standing position (VSupine), velocity to climb stairs (VCS) and velocity to wear sneakers (VWS). Volunteers of aerobic exercise protocol improved significantly the time to perform VWS (19.1%), while the volunteers of resistance exercise protocol improved the capacity to perform VCS (4.3%) and VSupine (8.9%). These results let us conclude that aerobic as well as resistance exercise protocols induced positive effect on activities of daily living, suggesting that both protocols must be associated for an adequate exercise program to improve the functional capacity of elderly people.
Resumo:
We previously reported that melatonin modulates the Plasmodium falciparum erythrocytic cycle by increasing schizont stage population as well as diminishing ring stage population. In addition, the importance of calcium and cAMP in melatonin signaling pathway in P. falciparum was also demonstrated. Nevertheless, the molecular effectors of the indoleamine signaling pathway remain elusive. We now demonstrate by real-time PCR that melatonin treatment up-regulates genes related to ubiquitin/proteasome system (UPS) components and that luzindole, a melatonin receptor antagonist, inhibits UPS transcription modulation. We also show that protein kinase PfPK7, a P. falciparum orphan kinase, plays a crucial role in the melatonin transduction pathway, since following melatonin treatment of P. falciparum parasites where pfpk7 gene is disrupted (pfpk7- parasites) (i) the ratio of asexual stages remain unchanged, (ii) the increase in cytoplasmatic calcium in response to melatonin was strongly diminished and (iii) up-regulation of UPS genes did not occur. The wild-type melatonin-induced alterations in cell cycle features, calcium rise and UPS gene transcription were restored by re-introduction of a functional copy of the pfpk7 gene in the pfpk7- parasites.
Resumo:
To address the prognostic value of minimal residual disease (MRD) before unrelated cord blood transplantation (UCBT) in children with acute lymphoblastic leukemia (ALL), we analyzed 170 ALL children transplanted in complete remission (CR) after myeloablative conditioning regimen. In all, 72 (43%) were in first CR (CR1), 77 (45%) in second CR (CR2) and 21 (12%) in third CR (CR3). The median interval from MRD quantification to UCBT was 18 days. All patients received single-unit UCBT. Median follow-up was 4 years. Cumulative incidence (CI) of day-60 neutrophil engraftment was 85%. CI of 4 years relapse was 30%, incidence being lower in patients with negative MRD before UCBT (hazard ratio (HR) = 0.4, P = 0.01) and for those transplanted in CR1 and CR2 (HR = 0.3, P = 0.002). Probability of 4 years leukemia-free survival (LFS) was 44%, (56, 44 and 14% for patients transplanted in CR1, CR2 and CR3, respectively (P = 0.0001)). Patients with negative MRD before UCBT had better LFS after UCBT compared with those with positive MRD (54% vs 29%; HR = 2, P = 0.003). MRD assessment before UCBT for children with ALL in remission allows identifying patients at higher risk of relapse after transplantation. Approaches that may decrease relapse incidence in children given UCBT with positive MRD should be investigated to improve final outcomes. Leukemia (2012) 26, 2455-2461; doi:10.1038/leu.2012.123
Resumo:
Abstract Background Family history is among the few established risk factors for testicular germ cell tumor (TGCT). Approximately 1.4% of newly diagnosed TGCT patients report a positive family history of TGCT. Sons and siblings of TGCT patients have four- to six fold and eight- to tenfold increase in TGCT risk, respectively. In twins of men with TGCT the relative risk of testicular cancer is 37.5 (12.3-115.6). Nevertheless, information about the occurrence of TGCT in relatives of patients with extragonadal germ cell tumor is limited. Case report A 24 year-old male patient was diagnosed with a mediastinum tumor and was submitted to image-guided biopsy, which revealed a seminoma. Two months later, his non-identical asymptomatic twin brother was submitted to an elective ultrasound of the testes, which showed a left testicular mass of 4.2 cm. This patient underwent orchiectomy revealing a seminoma of the left testis. There are no other cases of seminoma or other types of cancers reported in first-degree relatives in this family. Conclusions Although familial aggregations of TGCT have been well described, to the best of our knowledge, no data concerning the association of gonadal and extragonadal germ cell tumor in relatives has been previously reported. Further investigation on this association is warranted and may help in improving our knowledge of familial pattern inheritance.
Resumo:
Abstract Background Current evidence implicates aberrant microRNA expression patterns in human malignancies; measurement of microRNA expression may have diagnostic and prognostic applications. Roles for microRNAs in head and neck squamous cell carcinomas (HNSCC) are largely unknown. HNSCC, a smoking-related cancer, is one of the most common malignancies worldwide but reliable diagnostic and prognostic markers have not been discovered so far. Some studies have evaluated the potential use of microRNA as biomarkers with clinical application in HNSCC. Methods MicroRNA expression profile of oral squamous cell carcinoma samples was determined by means of DNA microarrays. We also performed gain-of-function assays for two differentially expressed microRNA using two squamous cell carcinoma cell lines and normal oral keratinocytes. The effect of the over-expression of these molecules was evaluated by means of global gene expression profiling and cell proliferation assessment. Results Altered microRNA expression was detected for a total of 72 microRNAs. Among these we found well studied molecules, such as the miR-17-92 cluster, comprising potent oncogenic microRNA, and miR-34, recently found to interact with p53. HOX-cluster embedded miR-196a/b and miR-10b were up- and down-regulated, respectively, in tumor samples. Since validated HOX gene targets for these microRNAs are not consistently deregulated in HNSCC, we performed gain-of-function experiments, in an attempt to outline their possible role. Our results suggest that both molecules interfere in cell proliferation through distinct processes, possibly targeting a small set of genes involved in cell cycle progression. Conclusions Functional data on miRNAs in HNSCC is still scarce. Our data corroborate current literature and brings new insights into the role of microRNAs in HNSCC. We also show that miR-196a and miR-10b, not previously associated with HNSCC, may play an oncogenic role in this disease through the deregulation of cell proliferation. The study of microRNA alterations in HNSCC is an essential step to the mechanistic understanding of tumor formation and could lead to the discovery of clinically relevant biomarkers.
Resumo:
The pulmonary surfactant has essential physical properties for normal lung function. The most important property is the surface tension. In this work, it was evaluated the surface tension of two commercial exogenous surfactants used in surfactant replacement therapy, poractant alfa (Curosurf, Chiesi Farmaceuticals, Italy) and beractant (Survanta, Abbott Laboratories, USA) using new parameters. A Langmuir film balance (Minitrough, KSV Instruments, Finland) was used to measure surface tension of poractant alfa and beractant samples. For both samples, we prepared a solution of 1 mg/m dissolved in chloroform (100π`), which was applied over a subphase of milli-Q water (175 ml) in the chamber of the balance. The chamber has two moving barriers that can change its surface area between a maximal value of 112.5 cm 2 , and a minimal value of 22.5 cm 2, defining a balance cycle. Each surfactant had its surface tension evaluated during 20 balance cycles for three times. Four quantities were calculated from the experiment: Minimum Surface Tension (MTS), defined as the surface tension at minimal surface area during the first cycle; Mean Work Cycle (MWC), defined as the mean hysteresis area of the measured surface tension curve of the last 16 balance cycles; Critical Active Surface Area in Compression (CASAC) or in Expansion (CASAE), defined as the maximal chamber area where the surfactant is active on the surface in compression or expansion. The t-test was applied to verify for statistical significance of the results. Comproved with the MST is the same reported in literature, the differences between MWC, CASAC, and CASAE were statistically significant (p<0.001). The MWC, CASAC and CASAE were higher for poractant alfa than for beractant. A higher MWC for poractant alfa means higher elastic recoil of the lung in comparison with beractant. Using a different methodology, our results showed that poractant alfa is probably more effective in a surfactant replacement therapy than beractant due the use of poractant alfa in relation to the use of beractant in preterm infants with Respiratory Distress Syndrome (RDS).
Resumo:
MYCN oncogene amplification/expression is a feature of many childhood tumors, and some adult tumors, and it is associated with poor prognosis. While MYC expression is ubiquitary, MYCN has a restricted expression after birth and it is an ideal target for an effective therapy. PNAs belong to the latest class of nucleic acid-based therapeutics, and they can bind chromosomal DNA and block gene transcription (anti-gene activity). We have developed an anti-gene PNA that targets specifically the MYCN gene to block its transcription. We report for the first time MYCN targeted inhibition in Rhabdomyosarcoma (RMS) by the anti-MYCN-PNA in RMS cell lines (four ARMS and four ERMS) and in a xenograft RMS mouse model. Rhabdomyosarcoma is the most common pediatric soft-tissue sarcoma, comprising two main subgroups [Alveolar (ARMS) and Embryonal (ERMS)]. ARMS is associated with a poorer prognosis. MYCN amplification is a feature of both the ERMS and ARMS, but the MYCN amplification and expression levels shows a significant correlation and are greater in ARMS, in which they are associated with adverse outcome. We found that MYCN mRNA and protein levels were higher in the four ARMS (RH30, RH4, RH28 and RMZ-RC2) than in the four ERMS (RH36, SMS-CTR, CCA and RD) cell lines. The potent inhibition of MYCN transcription was highly specific, it did not affect the MYC expression, it was followed by cell-growth inhibition in the RMS cell lines which correlated with the MYCN expression rate, and it led to complete cell-growth inhibition in ARMS cells. We used a mutated- PNA as control. MYCN silencing induced apoptosis. Global gene expression analysis (Affymetrix microarrays) in ARMS cells treated with the anti-MYCN-PNA revealed genes specifically induced or repressed, with both genes previously described as targets of N-myc or Myc, and new genes undescribed as targets of N-myc or Myc (mainly involved in cell cycle, apoptosis, cell motility, metastasis, angiogenesis and muscle development). The changes in the expression of the most relevant genes were confirmed by Real-Time PCR and western blot, and their expression after the MYCN silencing was evaluated in the other RMS cell lines. The in vivo study, using an ARMS xenograft murine model evaluated by micro-PET, showed a complete elimination of the metabolic tumor signal in most of the cases (70%) after anti-MYCN-PNA treatment (without toxicity), whereas treatment with the mutated-PNA had no effect. Our results strongly support the development of MYCN anti-gene therapy for the treatment of RMS, particularly for poor prognosis ARMS, and of other MYCN-expressing tumors.
Resumo:
This work presents exact, hybrid algorithms for mixed resource Allocation and Scheduling problems; in general terms, those consist into assigning over time finite capacity resources to a set of precedence connected activities. The proposed methods have broad applicability, but are mainly motivated by applications in the field of Embedded System Design. In particular, high-performance embedded computing recently witnessed the shift from single CPU platforms with application-specific accelerators to programmable Multi Processor Systems-on-Chip (MPSoCs). Those allow higher flexibility, real time performance and low energy consumption, but the programmer must be able to effectively exploit the platform parallelism. This raises interest in the development of algorithmic techniques to be embedded in CAD tools; in particular, given a specific application and platform, the objective if to perform optimal allocation of hardware resources and to compute an execution schedule. On this regard, since embedded systems tend to run the same set of applications for their entire lifetime, off-line, exact optimization approaches are particularly appealing. Quite surprisingly, the use of exact algorithms has not been well investigated so far; this is in part motivated by the complexity of integrated allocation and scheduling, setting tough challenges for ``pure'' combinatorial methods. The use of hybrid CP/OR approaches presents the opportunity to exploit mutual advantages of different methods, while compensating for their weaknesses. In this work, we consider in first instance an Allocation and Scheduling problem over the Cell BE processor by Sony, IBM and Toshiba; we propose three different solution methods, leveraging decomposition, cut generation and heuristic guided search. Next, we face Allocation and Scheduling of so-called Conditional Task Graphs, explicitly accounting for branches with outcome not known at design time; we extend the CP scheduling framework to effectively deal with the introduced stochastic elements. Finally, we address Allocation and Scheduling with uncertain, bounded execution times, via conflict based tree search; we introduce a simple and flexible time model to take into account duration variability and provide an efficient conflict detection method. The proposed approaches achieve good results on practical size problem, thus demonstrating the use of exact approaches for system design is feasible. Furthermore, the developed techniques bring significant contributions to combinatorial optimization methods.
Resumo:
This 9p21 locus, encode for important proteins involved in cell cycle regulation and apoptosis containing the p16/CDKN2A (cyclin-dependent kinase inhibitor 2a) tumor suppressor gene and two other related genes, p14/ARF and p15/CDKN2B. This locus, is a major target of inactivation in the pathogenesis of a number of human tumors, both solid and haematologic, and is a frequent site of loss or deletion also in acute lymphoblastic leukemia (ALL) ranging from 18% to 45% 1. In order to explore, at high resolution, the frequency and size of alterations affecting this locus in adult BCR-ABL1-positive ALL and to investigate their prognostic value, 112 patients (101 de novo and 11 relapse cases) were analyzed by genome-wide single nucleotide polymorphisms arrays and gene candidate deep exon sequencing. Paired diagnosis-relapse samples were further available and analyzed for 19 (19%) cases. CDKN2A/ARF and CDKN2B genomic alterations were identified in 29% and 25% of newly diagnosed patients, respectively. Deletions were monoallelic in 72% of cases and in 43% the minimal overlapping region of the lost area spanned only the CDKN2A/2B gene locus. The analysis at the time of relapse showed an almost significant increase in the detection rate of CDKN2A/ARF loss (47%) compared to diagnosis (p = 0.06). Point mutations within the 9p21 locus were found at very low level with only a non-synonymous substition in the exon 2 of CDKN2A. Finally, correlation with clinical outcome showed that deletions of CDKN2A/B are significantly associated with poor outcome in terms of overall survival (p = 0.0206), disease free-survival (p = 0.0010) and cumulative incidence of relapse (p = 0.0014). The inactivation of 9p21 locus by genomic deletions is a frequent event in BCR-ABL1-positive ALL. Deletions are frequently acquired at the leukemia progression and work as a poor prognostic marker.
Resumo:
The aims of this work were to investigate the role of nuclear Phospholipase C beta 1 (PI-PLCβ1) in human and mouse cell lines and to identify new binding partners of nuclear PI-PLCβ1 to further understand the functional network in which the enzyme acts. The intracellular distribution of PI-PLCβ1 was further investigated in human leukaemia cell lines (NB4, HL60, THP1, CEM, Jurkat, K562). With the exception of HL60, a high endogenous level of PI-PLCβ1 was detected in purified nuclei in each of the cell lines. We found that also in Ba/F3 pro-B cells overexpressing PI-PLCβ1b the protein localize within the nucleus. Although our data demonstrated that PI-PLCβ1b was not involved in cell proliferation and IGF-1 response as shown in other cell lines (FELC and Swiss 3T3), there was an effect on apoptosis. Activation of early apoptotic markers caspase-3 and PARP was delayed in PI-PLCβ1b overexpressing Ba/F3 cells treated with 5 gr/ml mitomycin C for 24h. We performed an antibody-specific immunoprecipitation on nuclear lysates from FELC-PLCβ1b cells. Mass spectrometry analysis (nano-ESI-Q-TOF) of co-immunoprecipitated proteins allowed for identification of 92 potential nuclear PI-PLCβ1b interactors. Among these, several already documented PI-PLCβ1b interacting partners (Srp20, LaminB, EF1α2) were identified, further validating our data. All the identified proteins were nuclear, mostly localized within the nuclear speckles. This evidence is particularly relevant as PI-PLCβ1 is known to localize in the same domains. Many of the identified proteins are involved in cell cycle, proliferation and transcriptional control. In particular, many of the proteins are components of the spliceosome multi-complex, strengthening the idea that PI-PLCβ1b is involved in mRNA processing and maturation. Future work will aim to better characterize the regulatory role of PI-PLCβ1b in mRNA splicing.
Resumo:
Drosophila melanogaster enthält eine geringe Menge an 5-methyl-Cytosin. Die von mir untersuchte männliche Keimbahn von Drosophila weist jedoch keine nachweisbaren Mengen an DNA-Methylierung auf. Eine künstliche Expression der murinen de novo Methyltransferasen, DNMT3A und DNMT3B1, in den Fliegenhoden, führte nicht zu der erwarteten Methylierungszunahme und hatte keinen Effekt auf die Fruchtbarkeit der Männchen. Auch die gewebespezifische Expression unter der Verwendung des UAS/GAL4-Systems zeigte keine phenotypischen Veränderungen. Hingegen fanden wir auf Protein-Ebene des Chromatins von D. melanogaster und D. hydei spezifische Modifikationsmuster der Histone H3 und H4 in der Keimbahn, wie auch in den somatischen Zellen des Hodenschlauches. Die Modifikationsmuster der beiden Zelltypen unterscheiden sich grundlegend und weichen zudem von dem für Eu- und Heterochromatin erwarteten ab, was auf eine größere Komplexität des „Histon-Codes“ als angenommen hindeutet. Folglich liegt die epigenetische Information in Drosophila wahrscheinlich anstatt auf DNA- auf Protein-Ebene, wodurch Genexpression über die Chromatinstruktur reguliert wird. Es wurde gezeigt, dass der Transkriptionsfaktor E2F, der eine Schlüsselfunktion im Zellzyklus hat, durch unterschiedliche Transkripte offenbar quantitativ reguliert wird. Unsere Nachforschungen ergaben, dass die drei E2F1 Genprodukte in Drosophila neben ihrer Zellspezifität auch in unterschiedlichen Expressionsniveaus auftreten, was die Annahme einer quantitativen Expression unterstützt. Die verschiedenen Funktionen der multiplen Gene in Säugern, könnten so funktionell kompensiert werden. Die durch die Expression dreier dE2F1-Transkripte vermutete Synthese verschiedener Proteine konnte nicht bewiesen werden.
Resumo:
Cross Reacting Material 197(CRM197) is a Diphteria toxin non toxic mutant that had shown anti-tumor activity in mice and humans. CRM197 is utilized as a specific inhibitor of heparin-binding epidermal growth factor (HB-EGF), that competes for the epidermal growth factor receptor (EGFR), overexpressed in colorectal cancer and implicated in its progression. We evaluated the effects of CRM197 on HT-29 human colon cancer cell line behaviour and, for CRM197 recognized ability to inhibit HB-EGF, its possible effects on EGFR activation. In particular, while HT-29 does not show any reduction of viability after CRM197 treatment, or changes in cell cycle distribution, in EGFR localization or activation, they show a change in gene expression profile analyzed by microarray. This is the first study where the CRM197 treatment on HT-29 show the alteration of a specific and selected number of genes.