999 resultados para Underwater imaging
Resumo:
Changes in global climate and land use affect important prolesses from evapotranspiration and groundwater recharge to carbon storage and biochemical cycling. Near surface soil moisture is pivotal to understand the consequences of these changes. However, the dynamic interactions between vegetation and soil moisture remain largely unresolved because it is difficult to monitor and quantify subsurface hydrologic fluxes at relevant scales. Here we use electrical resistivity to monitor the influence of climate and vegetation on root-zone moisture, bridging the gap between remotely-sensed and in-situ point measurements. Our research quantifies large seasonal differences in root-zone moisture dynamics for a forest-grassland ecotone. We found large differences in effective rooting depth and moisture distributions for the two vegetation types. Our results highlight the likely impacts of land transformations on groun ter recharge, streamflow, and land-atmosphere exchanges.
Resumo:
Feedforward inhibition deficits have been consistently demonstrated in a range of neuropsychiatric conditions using prepulse inhibition (PPI) of the acoustic startle eye-blink reflex when assessing sensorimotor gating. While PPI can be recorded in acutely decerebrated rats, behavioural, pharmacological and psychophysiological studies suggest the involvement of a complex neural network extending from brainstem nuclei to higher order cortical areas. The current functional magnetic resonance imaging study investigated the neural network underlying PPI and its association with electromyographically (EMG) recorded PPI of the acoustic startle eye-blink reflex in 16 healthy volunteers. A sparse imaging design was employed to model signal changes in blood oxygenation level-dependent (BOLD) responses to acoustic startle probes that were preceded by a prepulse at 120 ms or 480 ms stimulus onset asynchrony or without prepulse. Sensorimotor gating was EMG confirmed for the 120-ms prepulse condition, while startle responses in the 480-ms prepulse condition did not differ from startle alone. Multiple regression analysis of BOLD contrasts identified activation in pons, thalamus, caudate nuclei, left angular gyrus and bilaterally in anterior cingulate, associated with EMGrecorded sensorimotor gating. Planned contrasts confirmed increased pons activation for startle alone vs 120-ms prepulse condition, while increased anterior superior frontal gyrus activation was confirmed for the reverse contrast. Our findings are consistent with a primary pontine circuitry of sensorimotor gating that interconnects with inferior parietal, superior temporal, frontal and prefrontal cortices via thalamus and striatum. PPI processes in the prefrontal, frontal and superior temporal cortex were functionally distinct from sensorimotor gating.
Resumo:
Purpose: To determine the extent to which the accuracy of magnetic resonance imaging (MRI) based virtual 3-dimensional (3D) models of the intact orbit can approach that of the gold standard, computed tomography (CT) based models. The goal was to determine whether MRI is a viable alternative to CT scans in patients with isolated orbital fractures and penetrating eye injuries, pediatric patients, and patients requiring multiple scans in whom radiation exposure is ideally limited. Materials and Methods: Patients who presented with unilateral orbital fractures to the Royal Brisbane and Women’s Hospital from March 2011 to March 2012 were recruited to participate in this cross-sectional study. The primary predictor variable was the imaging technique (MRI vs CT). The outcome measurements were orbital volume (primary outcome) and geometric intraorbital surface deviations (secondary outcome)between the MRI- and CT-based 3D models. Results: Eleven subjects (9 male) were enrolled. The patients’ mean age was 30 years. On average, the MRI models underestimated the orbital volume of the CT models by 0.50 0.19 cm3 . The average intraorbital surface deviation between the MRI and CT models was 0.34 0.32 mm, with 78 2.7% of the surface within a tolerance of 0.5 mm. Conclusions: The volumetric differences of the MRI models are comparable to reported results from CT models. The intraorbital MRI surface deviations are smaller than the accepted tolerance for orbital surgical reconstructions. Therefore, the authors believe that MRI is an accurate radiation-free alternative to CT for the primary imaging and 3D reconstruction of the bony orbit. �
Resumo:
A new imaging methodology is described to visualise the post lens tear film (PLTF) during contact lens wear. A rotating-Scheimpflug camera in combination with sodium fluorescein allows evaluation of the PLTF for different contact lens modalities, including mini-scleral, rigid gas permeable (RGP) and soft contact lenses. This imaging technique provides an extension of the instrument’s current functionality. The potential advantages and limitations of the technique are discussed.
Resumo:
Regional cerebral blood flow (rCBF) and blood oxygenation level-dependent (BOLD) contrasts represent different physiological measures of brain activation. The present study aimed to compare two functional brain imaging techniques (functional magnetic resonance imaging versus [15O] positron emission tomography) when using Tower of London (TOL) problems as the activation task. A categorical analysis (task versus baseline) revealed a significant BOLD increase bilaterally for the dorsolateral prefrontal and inferior parietal cortex and for the cerebellum. A parametric haemodynamic response model (or regression analysis) confirmed a task-difficulty-dependent increase of BOLD and rCBF for the cerebellum and the left dorsolateral prefrontal cortex. In line with previous studies, a task-difficulty-dependent increase of left-hemispheric rCBF was also detected for the premotor cortex, cingulate, precuneus, and globus pallidus. These results imply consistency across the two neuroimaging modalities, particularly for the assessment of prefrontal brain function when using a parametric TOL adaptation.
Resumo:
Vision-based underwater navigation and obstacle avoidance demands robust computer vision algorithms, particularly for operation in turbid water with reduced visibility. This paper describes a novel method for the simultaneous underwater image quality assessment, visibility enhancement and disparity computation to increase stereo range resolution under dynamic, natural lighting and turbid conditions. The technique estimates the visibility properties from a sparse 3D map of the original degraded image using a physical underwater light attenuation model. Firstly, an iterated distance-adaptive image contrast enhancement enables a dense disparity computation and visibility estimation. Secondly, using a light attenuation model for ocean water, a color corrected stereo underwater image is obtained along with a visibility distance estimate. Experimental results in shallow, naturally lit, high-turbidity coastal environments show the proposed technique improves range estimation over the original images as well as image quality and color for habitat classification. Furthermore, the recursiveness and robustness of the technique allows implementation onboard an Autonomous Underwater Vehicle for improving navigation and obstacle avoidance performance.
Resumo:
A system for monitoring conditions in a remote environment. The system comprising a data transmission network including a plurality of data sensing nodes. Each data sensing node includes an environment sensing means for periodically sensing the environment around node, a transmission means for periodic wireless transmission of sensed data to adjacent data sensing nodes. These adjacent data sensing nodes combining their sensed data with the received data from other data sensing nodes and on transmit the combined data.
Resumo:
Underwater wireless sensor networks (UWSNs) have become the seat of researchers' attention recently due to their proficiency to explore underwater areas and design different applications for marine discovery and oceanic surveillance. One of the main objectives of each deployed underwater network is discovering the optimized path over sensor nodes to transmit the monitored data to onshore station. The process of transmitting data consumes energy of each node, while energy is limited in UWSNs. So energy efficiency is a challenge in underwater wireless sensor network. Dual sinks vector based forwarding (DS-VBF) takes both residual energy and location information into consideration as priority factors to discover an optimized routing path to save energy in underwater networks. The modified routing protocol employs dual sinks on the water surface which improves network lifetime. According to deployment of dual sinks, packet delivery ratio and the average end to end delay are enhanced. Based on our simulation results in comparison with VBF, average end to end delay reduced more than 80%, remaining energy increased 10%, and the increment of packet reception ratio was about 70%.
Resumo:
Systems-level identification and analysis of cellular circuits in the brain will require the development of whole-brain imaging with single-cell resolution. To this end, we performed comprehensive chemical screening to develop a whole-brain clearing and imaging method, termed CUBIC (clear, unobstructed brain imaging cocktails and computational analysis). CUBIC is a simple and efficient method involving the immersion of brain samples in chemical mixtures containing aminoalcohols, which enables rapid whole-brain imaging with single-photon excitation microscopy. CUBIC is applicable to multicolor imaging of fluorescent proteins or immunostained samples in adult brains and is scalable from a primate brain to subcellular structures. We also developed a whole-brain cell-nuclear counterstaining protocol and a computational image analysis pipeline that, together with CUBIC reagents, enable the visualization and quantification of neural activities induced by environmental stimulation. CUBIC enables time-course expression profiling of whole adult brains with single-cell resolution.
Resumo:
The development of whole-body imaging at single-cell resolution enables system-level approaches to studying cellular circuits in organisms. Previous clearing methods focused on homogenizing mismatched refractive indices of individual tissues, enabling reductions in opacity but falling short of achieving transparency. Here, we show that an aminoalcohol decolorizes blood by efficiently eluting the heme chromophore from hemoglobin. Direct transcardial perfusion of an aminoalcohol-containing cocktail that we previously termed CUBIC coupled with a 10 day to 2 week clearing protocol decolorized and rendered nearly transparent almost all organs of adult mice as well as the entire body of infant and adult mice. This CUBIC-perfusion protocol enables rapid whole-body and whole-organ imaging at single-cell resolution by using light-sheet fluorescent microscopy. The CUBIC protocol is also applicable to 3D pathology, anatomy, and immunohistochemistry of various organs. These results suggest that whole-body imaging of colorless tissues at high resolution will contribute to organism-level systems biology.
Resumo:
Aims: The Medical Imaging Training Immersive Environment(MITIE) Computed Tomography(CT) system is an innovative virtual reality (VR) platform that allows students to practice a range of CT techniques. The aim of this pilot study was to harvest user feedback about the educational value of teh application and inform future pedagogical development. This presentation explores the use of this technology for skills training. Background: MITIE CT is a 3D VR environment that allows students to position a patient,and set CT technical parameters including IV contrast dose and dose rate. As with VR initiatives in other health disciplines the software mimics clinical practice as much as possible and uses 3D technology to enhance immersion and realism. The software is new and was developed by the Medical Imaging Course Team at a provider University with funding from a Health Workforce Australia 'Simulated Learning Environments' grant Methods: Current third year medical imaging students were provided with additional 1 hour MITIE laboratory tutorials and studnet feedback was collated with regard to educational value and performance. Ethical approval for the project was provided by the university ethics panel Results: This presentation provides qualitative analysis of student perceptions relating to satisfaction, usability and educational value. Students reported high levels of satisfaction and both feedback and assessment results confirmed the application's significance as a pre-clinical tool. There was a clear emerging theme that MITIE could be a useful learning tool that students could access to consolidate their clinical learning, either on campus or during their clinical placement. Conclusion: Student feedback indicates that MITIE CT has a valuable role to play in the clinial skills training for medical imaging students both in the academic and clinical environment. Future work will establish a framework for an appropriate supprting pedagogy that can cross the boundary between the two environments
Resumo:
Progression of spinal deformity in children was studied with Computed Tomography (CT) and Magnetic Resonance Imaging (MRI) to identify how gravity affects the deformity and to determine the full three-dimensional character of the deformity. The CT study showed that gravity is significant in deformity progression in some patients which has implications for clinical patient management. The world first MRI study showed that the standard clinical measure used to define the extent of the deformity is inadequate and further use of three-dimensional MRI should be considered by spinal surgeons.
Resumo:
Non-motorised underwater treadmills are commonly used in fitness activities. However, no studies have examined physiological and biomechanical responses of walking on non-motorised treadmills at different intensities and depths. Fifteen middle-aged healthy women underwent two underwater walking tests at two different depths, immersed either up to the xiphoid process (deep water) or the iliac crest (shallow water), at 100, 110, 120, 130 step-per-minute (spm). Oxygen consumption (VO2), heart rate (HR), blood lactate concentration, perceived exertion and step length were determined. Compared to deep water, walking in shallow water exhibited, at all intensities, significantly higher VO2 (+13.5%, on average) and HR (+8.1%, on average) responses. Water depth did not influence lactate concentration, whereas perceived exertion was higher in shallow compared to deep water, solely at 120 (+40%) and 130 (+39.4%) spm. Average step length was reduced as the intensity increased (from 100 to 130 spm), irrespective of water depth. Expressed as a percentage of maximum, average VO2 and HR were: 64–76% of peak VO2 and 71–90% of maximum HR, respectively at both water depths. Accordingly, this form of exercise can be included in the “vigorous” range of exercise intensity, at any of the step frequencies used in this study.