933 resultados para Two dimensional
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
We consider a dissipative oval-like shaped billiard with a periodically moving boundary. The dissipation considered is proportional to a power of the velocity V of the particle. The three specific types of power laws used are: (i) F proportional to-V; (ii) F proportional to-V-2 and (iii) F proportional to-V-delta with 1 < delta < 2. In the course of the dynamics of the particle, if a large initial velocity is considered, case (i) shows that the decay of the particle's velocity is a linear function of the number of collisions with the boundary. For case (ii), an exponential decay is observed, and for 1 < delta < 2, an powerlike decay is observed. Scaling laws were used to characterize a phase transition from limited to unlimited energy gain for cases (ii) and (iii). The critical exponents obtained for the phase transition in the case (ii) are the same as those obtained for the dissipative bouncer model. Therefore near this phase transition, these two rather different models belong to the same class of universality. For all types of dissipation, the results obtained allow us to conclude that suppression of the unlimited energy growth is indeed observed.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
We discuss the Dirac method analysis of two-dimensional induced gravity, coupled to bosonic matter fields, in reduced phase-space. After defining the extended Hamiltonian it is possible to fix the gauge completely. The Dirac brackets can all be obtained in closed form; nevertheless, the results are not particularly simple.
Resumo:
Using the integrability conditions that we recently obtained in two-dimensional QCD with massless fermions we arrive at a sufficient number of conservation laws to fix the scattering amplitudes involving a local version of the Wilson loop operator.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The formalism of supersymmetric Quantum Mechanics can be extended to arbitrary dimensions. We introduce this formalism and explore its utility to solve the Schodinger equation for a bidimensional potential. This potential can be applied in several systens in physical and chemistry context, for instance, it can be used to study benzene molecule.
Resumo:
We have used the adiabatic hyperspherical approach to determine the energies and wave functions of the ground state and first excited states of a two-dimensional D- ion in the presence of a magnetic field. Using a modified hyperspherical angular variable, potential energy curves are analytically obtained, allowing an accurate determination of the energy levels of this system. Upper and lower bounds for the ground-state energy have been determined by a non-adiabatic procedure, as the purpose is to improve the accuracy of method. The results are shown to be comparable to the best variational calculations reported in the literature.
Resumo:
In this work, we demonstrated the fabrication of two-dimensional (2D) photonic crystals layers (2D-PCLs) by combining holographic recording and the evaporation of antimony-based glasses. Such materials present high refractive indices that can be tuned from 1.8 to 2.4, depending on the film composition; thus, they are interesting dielectric materials for fabrication of 2D-PCLs. The good quality of the obtained samples allowed the measurement of their PC properties through the well-defined Fano resonances that appear in the transmittance spectrum measurements at different incidence angles. The experimental results are in good agreement with the calculated band diagram for the hexagonal asymmetric structure. (C) 2008 American Institute of Physics.
Resumo:
In this work we discuss the effect of quartic fermion self-interacting terms on the dynamically generated photon masses in 1+1 dimensions, for vector, chiral, and non-Abelian couplings. In the vector and chiral cases we find exactly the dynamically generated mass modified by the quartic term while in the non-Abelian case we find the dynamically generated mass associated with its Abelian part. We show that in the three cases there is a kind of duality between the gauge and quartic couplings. We perform functional as well as operator treatments allowing for the obtention of both fermion and vector field solutions. The structures of the Abelian models in terms of θ vacua are also addressed.
Resumo:
We show results from an analysis performed to test the resolving power of a two-dimensional χ2 method proposed previously when applied to the case of kaon interferometry, where no significant contribution from long-lived resonances is expected. For that purpose, use is made of the preliminary E859 K+K+ interferometry data from Si+Au collisions at 14.6/4 GeV/c. Although less sensitivity is achieved in the present case, this analysis seems to favor scenarios with no resonance formation at the AGS energy range. The possible compatibility of data with zero decoupling proper time interval, conjectured by the three-dimensional experimental analysis, is also investigated and is ruled out when considering more realistic dynamical models with expanding sources. Furthermore, these results strongly emphasize that the static Gaussian parametrization cannot be trusted under more realistic conditions, leading to a distorted or even wrong interpretation of the source parameters.
Resumo:
In this work we explore the consequences of dimensional reduction of the 3D Maxwell-Chern-Simons and some related models. A connection between topological mass generation in 3D and mass generation according to the Schwinger mechanism in 2D is obtained. In addition, a series of relationships is established by resorting to dimensional reduction and duality interpolating transformations. Non-Abelian generalizations are also pointed out.
Resumo:
In this letter we discuss the (2 + 1)-dimensional generalization of the Camassa-Holm equation. We require that this generalization be, at the same time, integrable and physically derivable under the same asymptotic analysis as the original Camassa-Holm equation. First, we find the equation in a perturbative calculation in shallow-water theory. We then demonstrate its integrability and find several particular solutions describing (2 + 1) solitary-wave like solutions. © 1999 Published by Elsevier Science B.V. All rights reserved.