950 resultados para Tuning.
Resumo:
Novel BioBr/Cd(OH)(2) heterostructures were synthesized by a facile chemical bath method under ambient conditions. A series of BiOBr/Cd(OH)(2) heterostructures were obtained by tuning the Bi/Cd molar ratios. The obtained heterostructures were characterized by powder X-ray diffraction (PXRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and energy dispersive spectroscopy (EDS). Optical properties were studied by UV-visible spectroscopy, diffuse reflectance spectroscopy and photoluminescence (PL). Photocatalytic studies on rhodamine B (RhB) under visible light irradiation showed that the heterostructures are very efficient photocatalysts in mild basic medium. Scavenger test studies confirmed that the photogenerated holes and superoxide radicals (O-2(center dot-)) are the main active species responsible for RhB degradation. Comparison of photoluminescence (PL) intensity suggested that an inhibited charge recombination is crucial for the degradation process over these photocatalysts. Moreover, relative positioning of the valence and conduction band edges of the semiconductors, O-2/O-2(center dot-) and (OH)-O-center dot/H2O redox potentials and HOMO-LUMO levels of RhB appear to be responsible for the hole-specificity of degradation. Photocatalytic recycling experiments indicated the high stability of the catalysts in the reaction medium without any significant loss of activity. This study hence concludes that the heterojunction constructed between Cd(OH)(2) and BiOBr interfaces play a crucial role in influencing the charge carrier dynamics and subsequent photocatalytic activity.
Resumo:
Ho3+ (0.25-7 mol%) doped Sr2CeO4 nanophosphors were synthesized by solution combustion method using urea as fuel. The structural properties of the nanophosphors were investigated by powder X-ray diffraction studies (PXRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) techniques. UV-Visible and photoluminescence (PL) spectroscopic techniques were used for analysing the optical properties of the nanoparticles. PXRD and TEM results revealed the formation of Sr2CeO4: Ho3+ nanocrystalline particles with orthorhombic crystal structure. From the UV-Vis studies the optical band gap energy found to decrease from 5.9 to 5.74 eV with increase in dopant concentration. The PL spectra exhibit the broad excitation band from 200 to 400 nm which concurs well with the commercial near UV LED. The PL spectra vary with the dopant content due to energy transfer from the host to the activator. In this present work we demonstrate that color tuning of phosphor can be achieved by merely varying the Ho3+ ions concentration. The CIE and CCT chromaticity coordinates suggests Sr2CeO4: Ho3+ nanophosphors may be potentially applicable as promising single - phased phosphors for lighting applications. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
We present the results of a theoretical study of a four-level atomic system in vee + ladder configuration using a density matrix analysis. The absorption and dispersion profiles are derived for a weak probe field and for varying strengths of the two strong control fields. For specificity, we choose energy levels of Rb-87, and present results for both stationary atoms and moving atoms in room temperature vapor. An electromagnetically induced absorption (EIA) peak with negative dispersion is observed at zero probe de-tuning when the control fields have equal strengths, which switches to electromagnetically induced transparency (ET) with positive dispersion (due to splitting of the EIA peak) when the control fields are unequal. There is significant linewidth narrowing in thermal vapor. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
The Continuum in the variation of the X-Z bond length change from blue-shifting to red-shifting through zero-shifting in the X-Z---Y complex is inevitable. This has been analyzed by ab-initio molecular orbital calculations using Z= Hydrogen, Halogens, Chalcogens, and Pnicogens as prototypical examples. Our analysis revealed that, the competition between negative hyperconjugation within the donor (X-Z) molecule and Charge Transfer (CT) from the acceptor (Y) molecule is the primary reason for the X-Z bond length change. Here, we report that, the proper tuning of X-and Y-group for a particular Z-can change the blue-shifting nature of X-Z bond to zero-shifting and further to red-shifting. This observation led to the proposal of a continuum in the variation of the X-Z bond length during the formation of X-Z---Y complex. The varying number of orbitals and electrons available around the Z-atom differentiates various classes of weak interactions and leads to interactions dramatically different from the H-Bond. Our explanations based on the model of anti-bonding orbitals can be transferred from one class of weak interactions to another. We further take the idea of continuum to the nature of chemical bonding in general. (C) 2015 Wiley Periodicals, Inc.
Resumo:
Graph algorithms have been shown to possess enough parallelism to keep several computing resources busy-even hundreds of cores on a GPU. Unfortunately, tuning their implementation for efficient execution on a particular hardware configuration of heterogeneous systems consisting of multicore CPUs and GPUs is challenging, time consuming, and error prone. To address these issues, we propose a domain-specific language (DSL), Falcon, for implementing graph algorithms that (i) abstracts the hardware, (ii) provides constructs to write explicitly parallel programs at a higher level, and (iii) can work with general algorithms that may change the graph structure (morph algorithms). We illustrate the usage of our DSL to implement local computation algorithms (that do not change the graph structure) and morph algorithms such as Delaunay mesh refinement, survey propagation, and dynamic SSSP on GPU and multicore CPUs. Using a set of benchmark graphs, we illustrate that the generated code performs close to the state-of-the-art hand-tuned implementations.
Resumo:
Hollow nanomaterials have attracted a lot of interest by virtue of their wide range of applications that arise primarily due to their unique architecture. A common strategy to synthesize hollow nanomaterials is by nucleation of the shell material over a preformed core and subsequent dissolution of the core in the second step. Herein an ultrafast, microwave route has been demonstrated, to synthesize PdO nanotubes in a single step using ZnO as a sacrificial template. The mechanism of the nanotube formation has been investigated in detail using control experiments. By tuning the starting ratio of PdCl2 : ZnO, hollow to hybrid PdO nanostructures could be obtained using the same method. Conversion of the PdO to Pd nanotubes has been shown by simple NaBH4 treatment. The thermal stability of the PdO nanotubes has been studied. The insights presented here are general and applicable for the synthesis of hybrids/hollow structures in other systems as well.
Resumo:
In Pt-transition metal (TM) alloy catalysts, the electron transfer from the TM to Pt is retarded owing to the inevitable oxidation of the TM surface by oxygen. In addition, acidic electrolytes such as those employed in fuel cells accelerate the dissolution of the surface TM oxide, which leads to catalyst degradation. Herein, we propose a novel synthesis strategy that selectively modifies the electronic structure of surface Co atoms with N-containing polymers, resulting in highly active and durable PtCo nanoparticle catalysts useful for the oxygen reduction reaction (ORR). The polymer, which is functionalized on carbon black, selectively interacts with the Co precursor, resulting in Co-N bond formation on the PtCo nanoparticle surface. Electron transfer from Co to Pt in the PtCo nanoparticles modified by the polymer is enhanced by the increase in the difference in electronegativity between Pt and Co compared with that in bare PtCo nanoparticles with the TM surface oxides. In addition, the dissolution of Co and Pt is prevented by the selective passivation of surface Co atoms and the decrease in the O-binding energy of surface Pt atoms. As a result, the catalytic activity and durability of PtCo nanoparticles for the ORR are significantly improved by the electronic ensemble effects. The proposed organic/inorganic hybrid concept will provide new insights into the tuning of nanomaterials consisting of heterogeneous metallic elements for various electrochemical and chemical applications.
Resumo:
Using density functional theory (DFT) we investigate the changes in electronic and transport properties of graphene bilayer caused by sliding one of the layers. Change in stacking pattern breaks the lattice symmetry, which results in Lifshitz transition together with the modulation of the electronic structure. Going from AA to AB stacking by sliding along armchair direction leads to a drastic transition in electronic structure from linear to parabolic dispersion. Our transport calculations show a significant change in the overall transmission value for large sliding distances along zigzag direction. The increase in interlayer coupling with normal compressive strain increases the overlapping of conduction and valence band, which leads to further shift in the Dirac points and an enhancement in the Lifshitz transition. The ability to tune the topology of band structure by sliding and/or applying normal compressive strain will open doors for controlled tuning of many physical phenomenon such as Landau levels and quantum Hall effect in graphene. (C) 2015 Elsevier Ltd. All rights reserved.
Resumo:
Salicylic acid (SA) based biodegradable polyanhydrides (PAHs) are of great interest for drug delivery in a variety of diseases and disorders owing to the multi-utility of SA. There is a need for the design of SA-based PAHs for tunable drug release, optimized for the treatment of different diseases. In this study, we devised a simple strategy for tuning the release properties and erosion kinetics of a family of PAHs. PAHs incorporating SA were derived from related aliphatic diacids, varying only in the chain length, and prepared by simple melt condensation polymerization. Upon hydrolysis induced erosion, the polymer degrades into cytocompatible products, including the incorporated bioactive SA and diacid. The degradation follows first order kinetics with the rate constant varying by nearly 25 times between the PAH obtained with adipic acid and that with dodecanedioic acid. The release profiles have been tailored from 100% to 50% SA release in 7 days across the different PAHs. The release rate constants of these semi-crystalline, surface eroding PAHs decreased almost linearly with an increase in the diacid chain length, and varied by nearly 40 times between adipic acid and dodecanedioic acid PAH. The degradation products with SA concentration in the range of 30-350 ppm were used to assess cytocompatibility and showed no cytotoxicity to HeLa cells. This particular strategy is expected to (a) enable synthesis of application specific PAHs with tunable erosion and release profiles; (b) encompass a large number of drugs that may be incorporated into the PAH matrix. Such a strategy can potentially be extended to the controlled release of other drugs that may be incorporated into the PAH backbone and has important implications for the rational design of drug eluting bioactive polymers.
Resumo:
This paper presents the design and implementation of PolyMage, a domain-specific language and compiler for image processing pipelines. An image processing pipeline can be viewed as a graph of interconnected stages which process images successively. Each stage typically performs one of point-wise, stencil, reduction or data-dependent operations on image pixels. Individual stages in a pipeline typically exhibit abundant data parallelism that can be exploited with relative ease. However, the stages also require high memory bandwidth preventing effective utilization of parallelism available on modern architectures. For applications that demand high performance, the traditional options are to use optimized libraries like OpenCV or to optimize manually. While using libraries precludes optimization across library routines, manual optimization accounting for both parallelism and locality is very tedious. The focus of our system, PolyMage, is on automatically generating high-performance implementations of image processing pipelines expressed in a high-level declarative language. Our optimization approach primarily relies on the transformation and code generation capabilities of the polyhedral compiler framework. To the best of our knowledge, this is the first model-driven compiler for image processing pipelines that performs complex fusion, tiling, and storage optimization automatically. Experimental results on a modern multicore system show that the performance achieved by our automatic approach is up to 1.81x better than that achieved through manual tuning in Halide, a state-of-the-art language and compiler for image processing pipelines. For a camera raw image processing pipeline, our performance is comparable to that of a hand-tuned implementation.
Resumo:
The inverse coupled dependence of electrical conductivity and thermopower on carrier concentration presents a big challenge in achieving a high figure of merit. However, the simultaneous enhancement of electrical conductivity and thermopower can be realized in practice by carefully engineering the electronic band structure. Here by taking the example of Bi2S3, we report a simultaneous increase in both electrical conductivity and thermopower under hydrostatic pressure. Application of hydrostatic pressure enables tuning of electronic structure in such a way that the conductivity effective mass decreases and the density of states effective mass increases. This dependence of effective masses leads to simultaneous enhancement in electrical conductivity and thermopower under n-type doping leading to a huge improvement in the power factor. Also lattice thermal conductivity exhibits very weak pressure dependence in the low pressure range. The large power factor together with low lattice thermal conductivity results in a high ZT value of 1.1 under n-type doping, which is nearly two times higher than the previously reported value. Hence, this pressure-tuned behaviour can enable the development of efficient thermoelectric devices in the moderate to high temperature range. We further demonstrate that similar enhancement can be observed by generating chemical pressure by doping Bi2S3 with smaller iso-electronic elements such as Sb at Bi sites, which can be achieved experimentally.
Resumo:
Significant research has been pursued to develop solar selective metallic coatings using a variety of coating deposition techniques, with limited attempts to assess the properties of bulk metallic materials for solar energy applications. In developing bulk solar reflectors with good reflectance in the entire solar range, we report a new class of reflector materials based on Cu-Sn intermetallics with tailored substitution of aluminium or zinc. Our experimental results suggest that the arc melted-suction cast Cu (78.8 at%)-Al (21.2 at%) alloy with nanoscale surface roughness can exhibit a combination of 89% bulk specular reflectance and 83% bulk solar reflectance, together with a hardness of 2 GPa. We show that the present alloy design approach paves the way for further opportunities of tuning the spectral properties of this new class of solar reflector material. (C) 2016 Elsevier B.V. All rights reserved.
Resumo:
We present up-to-date electroweak fits of various Randall-Sundrum (RS) models. We consider the bulk RS, deformed RS, and the custodial RS models. For the bulk RS case we find the lightest Kaluza-Klein (KK) mode of the gauge boson to be similar to 8 TeV, while for the custodial case it is similar to 3 TeV. The deformed model is the least fine-tuned of all which can give a good fit for KK masses < 2 TeV depending on the choice of the model parameters. We also comment on the fine-tuning in each case.
Resumo:
Controlled variation of the electronic properties of. two-dimensional (2D) materials by applying strain has emerged as a promising way to design materials for customized applications. Using density functional theory (DFT) calculations, we show that while the electronic structure and indirect band gap of SnS2 do not change significantly with the number of layers, they can be reversibly tuned by applying biaxial tensile (BT), biaxial compressive (BC), and normal compressive (NC) strains. Mono to multilayered SnS2 exhibit a reversible semiconductor to metal (S-M) transition with applied strain. For bilayer (2L) SnS2, the S-Mtransition occurs at the strain values of 17%,-26%, and -24% under BT, BC, and NC strains, respectively. Due to weaker interlayer coupling, the critical strain value required to achieve the S-Mtransition in SnS2 under NC strain is much higher than for MoS2. From a stability viewpoint, SnS2 becomes unstable at very low strain values on applying BC (-6.5%) and BT strains (4.9%), while it is stable even up to the transition point (-24%) in the case of NC strain. In addition to the reversible tuning of the electronic properties of SnS2, we also show tunability in the phononic band gap of SnS2, which increases with applied NC strain. This gap increases three times faster than for MoS2. This simultaneous tunability of SnS2 at the electronic and phononic levels with strain, makes it a potential candidate in field effect transistors (FETs) and sensors as well as frequency filter applications.
Resumo:
Ultrashort-pulse lasers with spectral tuning capability have widespread applications in fields such as spectroscopy, biomedical research and telecommunications. Mode-locked fibre lasers are convenient and powerful sources of ultrashort pulses, and the inclusion of a broadband saturable absorber as a passive optical switch inside the laser cavity may offer tuneability over a range of wavelengths. Semiconductor saturable absorber mirrors are widely used in fibre lasers, but their operating range is typically limited to a few tens of nanometres, and their fabrication can be challenging in the 1.3-1.5 microm wavelength region used for optical communications. Single-walled carbon nanotubes are excellent saturable absorbers because of their subpicosecond recovery time, low saturation intensity, polarization insensitivity, and mechanical and environmental robustness. Here, we engineer a nanotube-polycarbonate film with a wide bandwidth (>300 nm) around 1.55 microm, and then use it to demonstrate a 2.4 ps Er(3+)-doped fibre laser that is tuneable from 1,518 to 1,558 nm. In principle, different diameters and chiralities of nanotubes could be combined to enable compact, mode-locked fibre lasers that are tuneable over a much broader range of wavelengths than other systems.