842 resultados para Trophic Ecology
Resumo:
This work analyzes the relationship between large food webs describing potential feeding relations between species and smaller sub-webs thereof describing relations actually realized in local communities of various sizes. Special attention is given to the relationships between patterns of phylogenetic correlations encountered in large webs and sub-webs. Based on the current theory of food-web topology as implemented in the matching model, it is shown that food webs are scale invariant in the following sense: given a large web described by the model, a smaller, randomly sampled sub-web thereof is described by the model as well. A stochastic analysis of model steady states reveals that such a change in scale goes along with a re-normalization of model parameters. Explicit formulae for the renormalized parameters are derived. Thus, the topology of food webs at all scales follows the same patterns, and these can be revealed by data and models referring to the local scale alone. As a by-product of the theory, a fast algorithm is derived which yields sample food webs from the exact steady state of the matching model for a high-dimensional trophic niche space in finite time. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Scaling relationships between mean body masses and abundances of species in multitrophic communities continue to be a subject of intense research and debate. The top-down mechanism explored in this paper explains the frequently observed inverse linear relationship between body mass and abundance (i.e., constant biomass) in terms of a balancing of resource biomasses by behaviorally and evolutionarily adapting foragers, and the evolutionary response of resources to this foraging pressure. The mechanism is tested using an allometric, multitrophic community model with a complex food web structure. It is a statistical model describing the evolutionary and population dynamics of tens to hundreds of species in a uniform way. Particularities of the model are the detailed representation of the evolution and interaction of trophic traits to reproduce topological food web patterns, prey switching behavior modeled after experimental observations, and the evolutionary adaptation of attack rates. Model structure and design are discussed. For model states comparable to natural communities, we find that (1) the body-mass-abundance scaling does not depend on the allometric scaling exponent of physiological rates in the form expected from the energetic equivalence rule or other bottom-up theories; (2) the scaling exponent of abundance as a function of body mass is approximately -1, independent of the allometric exponent for physiological rates assumed; (3) removal of top-down control destroys this pattern, and energetic equivalence is recovered. We conclude that the top-down mechanism is active in the model, and that it is a viable alternative to bottom-up mechanisms for controlling body-mass-abundance relations in natural communities.
Resumo:
The trophic link density and the stability of food webs are thought to be related, but the nature of this relation is controversial. This article introduces a method for estimating the link density from diet tables which do not cover the complete food web and do not resolve all diet items to species level. A simple formula for the error of this estimate is derived. Link density is determined as a function of a threshold diet fraction below which diet items are ignored (
Resumo:
The large range of body-mass values of soil organisms provides a tool to assess the ecological organization of soil communities. The goal of this paper is to identify graphical and quantitative indicators of soil community composition and ecosystem functioning, and to illustrate their application to real soil food webs. The relationships between log-transformed mass and abundance of soil organisms in 20 Dutch meadows and heathlands were investigated. Using principles of allometry, maximal use can be made of ecological theory to build and explain food webs. The aggregate contribution of small invertebrates such as nematodes to the entire community is high under low soil phosphorus content and causes shifts in the mass-abundance relationships and in the trophic structures. We show for the first time that the average of the trophic link lengths is a reliable predictor for assessing soil fertility responses. Ordered trophic link pairs suggest a self-organizing structure of food webs according to resource availability and can predict environmental shifts in ecologically meaningful ways.
Resumo:
Food webs represent trophic (feeding) interactions in ecosystems. Since the late 1970s, it has been recognized that food-webs have a surprisingly close relationship to interval graphs. One interpretation of food-web intervality is that trophic niche space is low-dimensional, meaning that the trophic character of a species can be expressed by a single or at most a few quantitative traits. In a companion paper we demonstrated, by simulating a minimal food-web model, that food webs are also expected to be interval when niche-space is high-dimensional. Here we characterize the fundamental mechanisms underlying this phenomenon by proving a set of rigorous conditions for food-web intervality in high-dimensional niche spaces. Our results apply to a large class of food-web models, including the special case previously studied numerically.
Resumo:
A central question in community ecology is how the number of trophic links relates to community species richness. For simple dynamical food-web models, link density (the ratio of links to species) is bounded from above as the number of species increases; but empirical data suggest that it increases without bounds. We found a new empirical upper bound on link density in large marine communities with emphasis on fish and squid, using novel methods that avoid known sources of bias in traditional approaches. Bounds are expressed in terms of the diet-partitioning function (DPF): the average number of resources contributing more than a fraction f to a consumer's diet, as a function of f. All observed DPF follow a functional form closely related to a power law, with power-law exponents indepen- dent of species richness at the measurement accuracy. Results imply universal upper bounds on link density across the oceans. However, the inherently scale-free nature of power-law diet partitioning suggests that the DPF itself is a better defined characterization of network structure than link density.
Resumo:
A question central to modelling and, ultimately, managing food webs concerns the dimensionality of trophic niche space, that is, the number of independent traits relevant for determining consumer-resource links. Food-web topologies can often be interpreted by assuming resource traits to be specified by points along a line and each consumer's diet to be given by resources contained in an interval on this line. This phenomenon, called intervality, has been known for 30 years and is widely acknowledged to indicate that trophic niche space is close to one-dimensional. We show that the degrees of intervality observed in nature can be reproduced in arbitrary-dimensional trophic niche spaces, provided that the processes of evolutionary diversification and adaptation are taken into account. Contrary to expectations, intervality is least pronounced at intermediate dimensions and steadily improves towards lower- and higher-dimensional trophic niche spaces.
Resumo:
Size-spectrum theory is used to show that (i) predation mortality is a decreasing function of individual size and proportional to the consumption rate of predators; (ii) adult natural mortality M is proportional to the von Bertalanffy growth constant K; and (iii) productivity rate P/B is proportional to the asymptotic weight W8 -1/3. The constants of proportionality are specified using individual level parameters related to physiology or prey encounter. The derivations demonstrate how traditional fisheries theory can be connected to community ecology. Implications for the use of models for ecosystem-based fisheries management are discussed.
Resumo:
Jellyfish are one of the most abundant and conspicuous members of our coastal marine fauna and are now known to play major trophic roles in marine systems. However, little is known about the movements and behaviour of individuals. We equipped individual compass jellyfish (Chrysaora hysoscella) (n = 15) off the Dingle coast, Ireland, with miniature time-depth recorders to log their depth over periods of a few hours. Vertical movements were extensive, with all jellyfish changing their depth during tracking. A range of vertical movements were seen including initial diving from the surface down to a maximum of 29.6 m after device attachment, some jellyfish remaining near the bottom, some moving up and down in mid-water and some moving back near the surface. These results show that jellyfish actively reposition themselves in the water column over small time-scales and open the way for more extensive studies equipping jellyfish with electronic tags.
Resumo:
One of the reasons for the 'fin de seicle' angst within western liberal capitalist societies is the rise in prominance of ecological concerns within these societies. Long before the New Right declared the post-war welfare state to be untenable, early green critics had claimed it to be ecologically unsustainable. The addiction of the welfare state on ever increasing levels of economic growth was pronounced to be simply impossible within the context of a finite planet. Although it was not expressed in this manner, what these early ecological concerns with Limits to Growth were in effect saying was that the accumulation of capital rendered capitalism unsustainable. Yet the ecological critique of capitalism has not found much favour within the Marxist critique untile recently. Early Marxist analyses of the ecology movement dismissed them as ‘petty bourgeios radicals’ while many greens still view Marxism as ‘fair shares in extinction’. The lack of positive engagement and dialogue between Marxism and ecology has in recent years been put right with a discernable overlap between the two critiques of capitalism. This article seeks to present the areas of disagreement and agreement between the two and seeks to provide an ‘environmental audit’ on both the Marxist method and political project.
Resumo:
Background: Steatornis caripensis (the oilbird) is a very unusual bird. It supposedly never sees daylight, roosting in huge aggregations in caves during the day and bringing back fruit to the cave at night. As a consequence a large number of the seeds from the fruit they feed upon germinate in the cave and spoil.
Resumo:
This article documents the addition of 512 microsatellite marker loci and nine pairs of Single Nucleotide Polymorphism (SNP) sequencing primers to the Molecular Ecology Resources Database. Loci were developed for the following species: Alcippe morrisonia morrisonia, Bashania fangiana, Bashania fargesii, Chaetodon vagabundus, Colletes floralis, Coluber constrictor flaviventris, Coptotermes gestroi, Crotophaga major, Cyprinella lutrensis, Danaus plexippus, Fagus grandifolia, Falco tinnunculus, Fletcherimyia fletcheri, Hydrilla verticillata, Laterallus jamaicensis coturniculus, Leavenworthia alabamica, Marmosops incanus, Miichthys miiuy, Nasua nasua, Noturus exilis, Odontesthes bonariensis, Quadrula fragosa, Pinctada maxima, Pseudaletia separata, Pseudoperonospora cubensis, Podocarpus elatus, Portunus trituberculatus, Rhagoletis cerasi, Rhinella schneideri, Sarracenia alata, Skeletonema marinoi, Sminthurus viridis, Syngnathus abaster, Uroteuthis (Photololigo) chinensis, Verticillium dahliae, Wasmannia auropunctata, and Zygochlamys patagonica. These loci were cross-tested on the following species: Chaetodon baronessa, Falco columbarius, Falco eleonorae, Falco naumanni, Falco peregrinus, Falco subbuteo, Didelphis aurita, Gracilinanus microtarsus, Marmosops paulensis, Monodelphis Americana, Odontesthes hatcheri, Podocarpus grayi, Podocarpus lawrencei, Podocarpus smithii, Portunus pelagicus, Syngnathus acus, Syngnathus typhle,Uroteuthis (Photololigo) edulis, Uroteuthis (Photololigo) duvauceli and Verticillium albo-atrum. This article also documents the addition of nine sequencing primer pairs and sixteen allele specific primers or probes for Oncorhynchus mykiss and Oncorhynchus tshawytscha; these primers and assays were cross-tested in both species.
Resumo:
Body mass has been shown to scale negatively with abundance in a wide range of habitats and ecosystems. It is believed that this relationship has important consequences for the distribution and maintenance of energy in natural communities. Some studies have shown that the relationship between body mass and abundance may be robust to major food web perturbations, fuelling the belief that natural processes may preserve the slope of this relationship and the associated cycling of energy and nutrients. Here, we use data from a long-term experimental food web manipulation to examine this issue in a semi-natural environment. Similar communities were developed in large experimental mesocosms over a six month period. Some of the mesocosms were then subjected to species removals, based on the mean strength of their trophic interactions in the communities. In treatments where the strongest interactors were removed, a community-level trophic cascade occurred. The biomass density of invertebrates increased dramatically in these communities, which led to a suppression of primary production. In spite of these widespread changes in ecosystem functioning, the slope of the relationship between body mass and abundance remained unchanged. This was the case whether average species body mass and abundance or individual organism size spectra were considered. An examination of changes in species composition before and after the experimental manipulations revealed an important mechanism for maintaining the body mass-abundance relationship. The manipulated communities all had a higher species turnover than the intact communities, with the highest turnover in communities that experienced cascading effects. As some species increased in body mass and abundance, new species filled the available size-abundance niches that were created. This maintained the overall body mass-abundance relationship and provided a stabilising structure to these experimental communities.
Resumo:
Trophic scaling models describe how topological food-web properties such as the number of predator prey links scale with species richness of the community. Early models predicted that either the link density (i.e. the number of links per species) or the connectance (i.e. the linkage probability between any pair of species) is constant across communities. More recent analyses, however, suggest that both these scaling models have to be rejected, and we discuss several hypotheses that aim to explain the scale dependence of these complexity parameters. Based on a recent, highly resolved food-web compilation, we analysed the scaling behaviour of 16 topological parameters and found significant power law scaling relationships with diversity (i.e. species richness) and complexity (i.e. connectance) for most of them. These results illustrate the lack of universal constants in food-web ecology as a function of diversity or complexity. Nonetheless, our power law scaling relationships suggest that fundamental processes determine food-web topology, and subsequent analyses demonstrated that ecosystem-specific differences in these relationships were of minor importance. As such, these newly described scaling relationships provide robust and testable cornerstones for future structural food-web models.