793 resultados para Tree Representation
Resumo:
This article for the first time considers all extant ancient evidence for the habit of carving inscriptions on tree trunks. It emerges a picture that bears remarkable resemblances to what is known from the habit of graffiti writing (with important addition to that latter field to be derived from the findings), for individual and technical texts.
Resumo:
The 'self' is a complex multidimensional construct deeply embedded and in many ways defined by our relations with the social world. Individuals with autism are impaired in both self-referential and other-referential social cognitive processing. Atypical neural representation of the self may be a key to understanding the nature of such impairments. Using functional magnetic resonance imaging we scanned adult males with an autism spectrum condition and age and IQ-matched neurotypical males while they made reflective mentalizing or physical judgements about themselves or the British Queen. Neurotypical individuals preferentially recruit the middle cingulate cortex and ventromedial prefrontal cortex in response to self compared with other-referential processing. In autism, ventromedial prefrontal cortex responded equally to self and other, while middle cingulate cortex responded more to other-mentalizing than self-mentalizing. These atypical responses occur only in areas where self-information is preferentially processed and does not affect areas that preferentially respond to other-referential information. In autism, atypical neural self-representation was also apparent via reduced functional connectivity between ventromedial prefrontal cortex and areas associated with lower level embodied representations, such as ventral premotor and somatosensory cortex. Furthermore, the magnitude of neural self-other distinction in ventromedial prefrontal cortex was strongly related to the magnitude of early childhood social impairments in autism. Individuals whose ventromedial prefrontal cortex made the largest distinction between mentalizing about self and other were least socially impaired in early childhood, while those whose ventromedial prefrontal cortex made little to no distinction between mentalizing about self and other were the most socially impaired in early childhood. These observations reveal that the atypical organization of neural circuitry preferentially coding for self-information is a key mechanism at the heart of both self-referential and social impairments in autism.
Resumo:
One among the most influential and popular data mining methods is the k-Means algorithm for cluster analysis. Techniques for improving the efficiency of k-Means have been largely explored in two main directions. The amount of computation can be significantly reduced by adopting geometrical constraints and an efficient data structure, notably a multidimensional binary search tree (KD-Tree). These techniques allow to reduce the number of distance computations the algorithm performs at each iteration. A second direction is parallel processing, where data and computation loads are distributed over many processing nodes. However, little work has been done to provide a parallel formulation of the efficient sequential techniques based on KD-Trees. Such approaches are expected to have an irregular distribution of computation load and can suffer from load imbalance. This issue has so far limited the adoption of these efficient k-Means variants in parallel computing environments. In this work, we provide a parallel formulation of the KD-Tree based k-Means algorithm for distributed memory systems and address its load balancing issue. Three solutions have been developed and tested. Two approaches are based on a static partitioning of the data set and a third solution incorporates a dynamic load balancing policy.
Resumo:
A new heuristic for the Steiner Minimal Tree problem is presented here. The method described is based on the detection of particular sets of nodes in networks, the “Hot Spot” sets, which are used to obtain better approximations of the optimal solutions. An algorithm is also proposed which is capable of improving the solutions obtained by classical heuristics, by means of a stirring process of the nodes in solution trees. Classical heuristics and an enumerative method are used CIS comparison terms in the experimental analysis which demonstrates the goodness of the heuristic discussed in this paper.
Resumo:
A new heuristic for the Steiner minimal tree problem is presented. The method described is based on the detection of particular sets of nodes in networks, the “hot spot” sets, which are used to obtain better approximations of the optimal solutions. An algorithm is also proposed which is capable of improving the solutions obtained by classical heuristics, by means of a stirring process of the nodes in solution trees. Classical heuristics and an enumerative method are used as comparison terms in the experimental analysis which demonstrates the capability of the heuristic discussed
Resumo:
We introduce a technique for assessing the diurnal development of convective storm systems based on outgoing longwave radiation fields. Using the size distribution of the storms measured from a series of images, we generate an array in the lengthscale-time domain based on the standard score statistic. It demonstrates succinctly the size evolution of storms as well as the dissipation kinematics. It also provides evidence related to the temperature evolution of the cloud tops. We apply this approach to a test case comparing observations made by the Geostationary Earth Radiation Budget instrument to output from the Met Office Unified Model run at two resolutions. The 12km resolution model produces peak convective activity on all lengthscales significantly earlier in the day than shown by the observations and no evidence for storms growing in size. The 4km resolution model shows realistic timing and growth evolution although the dissipation mechanism still differs from the observed data.