874 resultados para Transition form factors


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bacteriophage Mu replicates as a transposable element, exploiting host enzymes to promote initiation of DNA synthesis. The phage-encoded transposase MuA, assembled into an oligomeric transpososome, promotes transfer of Mu ends to target DNA, creating a fork at each end, and then remains tightly bound to both forks. In the transition to DNA synthesis, the molecular chaperone ClpX acts first to weaken the transpososome's interaction with DNA, apparently activating its function as a molecular matchmaker. This activated transpososome promotes formation of a new nucleoprotein complex (prereplisome) by yet unidentified host factors [Mu replication factors (MRFα2)], which displace the transpososome in an ATP-dependent reaction. Primosome assembly proteins PriA, PriB, DnaT, and the DnaB–DnaC complex then promote the binding of the replicative helicase DnaB on the lagging strand template of the Mu fork. PriA helicase plays an important role in opening the DNA duplex for DnaB binding, which leads to assembly of DNA polymerase III holoenzyme to form the replisome. The MRFα2 transition factors, assembled into a prereplisome, not only protect the fork from action by nonspecific host enzymes but also appear to aid in replisome assembly by helping to activate PriA's helicase activity. They consist of at least two separable components, one heat stable and the other heat labile. Although the MRFα2 components are apparently not encoded by currently known homologous recombination genes such as recA, recF, recO, and recR, they may fulfill an important function in assembling replisomes on arrested replication forks and products of homologous strand exchange.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Runx (Cbfa/AML) transcription factors are critical for tissue-specific gene expression. A unique targeting signal in the C terminus directs Runx factors to discrete foci within the nucleus. Using Runx2/CBFA1/AML3 and its essential role in osteogenesis as a model, we investigated the fundamental importance of fidelity of subnuclear localization for tissue differentiating activity by deleting the intranuclear targeting signal via homologous recombination. Mice homozygous for the deletion (Runx2ΔC) do not form bone due to maturational arrest of osteoblasts. Heterozygotes do not develop clavicles, but are otherwise normal. These phenotypes are indistinguishable from those of the homozygous and heterozygous null mutants, indicating that the intranuclear targeting signal is a critical determinant for function. The expressed truncated Runx2ΔC protein enters the nucleus and retains normal DNA binding activity, but shows complete loss of intranuclear targeting. These results demonstrate that the multifunctional N-terminal region of the Runx2 protein is not sufficient for biological activity. We conclude that subnuclear localization of Runx factors in specific foci together with associated regulatory functions is essential for control of Runx-dependent genes involved in tissue differentiation during embryonic development.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Members of the LEF-1/TCF family of transcription factors have been implicated in mediating a nuclear response to Wnt signals by association with β-catenin. Consistent with this view, mice carrying mutations in either the Wnt3a gene or in both transcription factor genes Lef1 and Tcf1 were previously found to show a similar defect in the formation of paraxial mesoderm in the gastrulating mouse embryo. In addition, mutations in the Brachyury gene, a direct transcriptional target of LEF-1, were shown to result in mesodermal defects. However, direct evidence for the role of LEF-1 and Brachyury in Wnt3a signaling has been limiting. In this study, we genetically examine the function of LEF-1 in the regulation of Brachyury expression and in signaling by Wnt3a. Analysis of the expression of Brachyury in Lef1−/−Tcf1−/− mice and studies of Brachyury:lacZ transgenes containing wild type or mutated LEF-1 binding sites indicate that Lef1 is dispensable for the initiation, but is required for the maintenance of Brachyury expression. We also show that the expression of an activated form of LEF-1, containing the β-catenin activation domain fused to the amino terminus of LEF-1, can rescue a Wnt3a mutation. Together, these data provide genetic evidence that Lef1 mediates the Wnt3a signal and regulates the stable maintenance of Brachyury expression during gastrulation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The hair follicle is a cyclic, self renewing epidermal structure which is thought to be controlled by signals from the dermal papilla, a specialized cluster of mesenchymal cells within the dermis. Topical treatments with 17-beta-estradiol to the clipped dorsal skin of mice arrested hair follicles in telogen and produced a profound and prolonged inhibition of hair growth while treatment with the biologically inactive stereoisomer, 17-alpha-estradiol, did not inhibit hair growth. Topical treatments with ICI 182,780, a pure estrogen receptor antagonist, caused the hair follicles to exit telogen and enter anagen, thereby initiating hair growth. Immunohistochemical staining for the estrogen receptor in skin revealed intense and specific staining of the nuclei of the cells of the dermal papilla. The expression of the estrogen receptor in the dermal papilla was hair cycle-dependent with the highest levels of expression associated with the telogen follicle. 17-beta-Estradiol-treated epidermis demonstrated a similar number of 5-bromo-2'-deoxyuridine (BrdUrd) S-phase cells as the control epidermis above telogen follicles; however, the number of BrdUrd S-phase basal cells in the control epidermis varied according to the phase of the cycle of the underlying hair follicles and ranged from 2.6% above telogen follicles to 7.0% above early anagen follicles. These findings indicate an estrogen receptor pathway within the dermal papilla regulates the telogen-anagen follicle transition and suggest that diffusible factors associated with the anagen follicle influence cell proliferation in the epidermis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Transcription of the genes for the human histone proteins H4, H3, H2A, H2B, and H1 is activated at the G1/S phase transition of the cell cycle. We have previously shown that the promoter complex HiNF-D, which interacts with cell cycle control elements in multiple histone genes, contains the key cell cycle factors cyclin A, CDC2, and a retinoblastoma (pRB) protein-related protein. However, an intrinsic DNA-binding subunit for HiNF-D was not identified. Many genes that are up-regulated at the G1/S phase boundary are controlled by E2F, a transcription factor that associates with cyclin-, cyclin-dependent kinase-, and pRB-related proteins. Using gel-shift immunoassays, DNase I protection, and oligonucleotide competition analyses, we show that the homeodomain protein CDP/cut, not E2F, is the DNA-binding subunit of the HiNF-D complex. The HiNF-D (CDP/cut) complex with the H4 promoter is immunoreactive with antibodies against CDP/cut and pRB but not p107, whereas the CDP/cut complex with a nonhistone promoter (gp91-phox) reacts only with CDP and p107 antibodies. Thus, CDP/cut complexes at different gene promoters can associate with distinct pRB-related proteins. Transient coexpression assays show that CDP/cut modulates H4 promoter activity via the HiNF-D-binding site. Hence, DNA replication-dependent histone H4 genes are regulated by an E2F-independent mechanism involving a complex of CDP/cut with cyclin A/CDC2/ RB-related proteins.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A hyperphosphorylated form of the largest subunit of RNA polymerase II (pol IIo) is associated with the pre-mRNA splicing process. Pol IIo was detected in association with a subset of small nuclear ribonucleoprotein particle and Ser-Arg protein splicing factors and also with pre-mRNA splicing complexes assembled in vitro. A subpopulation of pol IIo was localized to nuclear "speckle" domains enriched in splicing factors, indicating that it may also be associated with RNA processing in vivo. Moreover, pol IIo was retained in a similar pattern following in situ extraction of cells and was quantitatively recovered in the nuclear matrix fraction. The results implicate nuclear matrix-associated hyperphosphorylated pol IIo as a possible link in the coordination of transcription and splicing processes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have studied the ability of the histone (H3-H4)2 tetramer, the central part of the nucleosome of eukaryotic chromatin, to form particles on DNA minicircles of negative and positive superhelicities, and the effect of relaxing these particles with topoisomerase I. The results show that even modest positive torsional stress from the DNA, and in particular that generated by DNA thermal fluctuations, can trigger a major, reversible change in the conformation of the particle. Neither a large excess of naked DNA, nor a crosslink between the two H3s prevented the transition from one form to the other. This suggested that during the transition, the histones neither dissociated from the DNA nor were even significantly reshuffled. Moreover, the particles reconstituted on negatively and positively supercoiled minicircles look similar under electron microscopy. These data agree best with a transition involving a switch of the wrapped DNA from a left- to a right-handed superhelix. It is further proposed, based on the left-handed overall superhelical conformation of the tetramer within the octamer [Arents, G., Burlingame, R. W., Wang, B. C., Love, W. E. & Moudrianakis, E. N. (1991) Proc. Natl.Acad. Sci. USA 88, 10148-10152] that this change in DNA topology is mediated by a similar change in the topology of the tetramer itself, which may occur through a rotation (or a localized deformation) of the two H3-H4 dimers about their H3-H3 interface. Potential implications of this model for nucleosome dynamics in vivo are discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The use of permeabilized cell models to study nuclear protein import has led to the identification of cytosolic components of the import machinery, including the NLS receptor, p97, Ran/TC4, and nuclear transport factor 2 (NTF2). These proteins are required to reconstitute docking of transport ligand at the nuclear pore complex and subsequent translocation through the nuclear pore. However, a detailed molecular understanding of how these factors mediate protein import is lacking. Here we describe the results of solution and solid phase binding assays, which demonstrate that the small GTPase Ran/TC4 interacts directly with the cytosolic transport factors p97 and NTF2. By preloading recombinant Ran/TC4 with [gamma-32P]GTP or [3H]GDP, we show that the interactions with p97 and NTF2 are specific for the GTP- and GDP-bound forms, respectively. These data together with previous studies lead us to suggest that the interaction of the GTP-bound form of Ran/TC4 with p97 is linked to an early step in the nuclear protein import pathway and that the association of the GDP-bound form of Ran/TC4 with NTF2 helps define vectorial transport.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We describe a conserved family of bacterial gene products that includes the VirB1 virulence factor encoded by tumor-inducing plasmids of Agrobacterium spp., proteins involved in conjugative DNA transfer of broad-host-range bacterial plasmids, and gene products that may be involved in invasion by Shigella spp. and Salmonella enterica. Sequence analysis and structural modeling show that the proteins in this group are related to chicken egg white lysozyme and are likely to adopt a lysozyme-like structural fold. Based on their similarity to lysozyme, we predict that these proteins have glycosidase activity. Iterative data base searches with three conserved sequence motifs from this protein family detect a more distant relationship to bacterial and bacteriophage lytic transglycosylases, and goose egg white lysozyme. Two acidic residues in the VirB1 protein of Agrobacterium tumefaciens form a putative catalytic dyad, Each of these residues was changed into the corresponding amide by site-directed mutagenesis. Strains of A. tumefaciens that express mutated VirB1 proteins have a significantly reduced virulence. We hypothesize that many bacterial proteins involved in export of macromolecules belong to a widespread class of hydrolases and cleave beta-1,4-glycosidic bonds as part of their function.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Stage specific activator protein (SSAP) is a member of a newly discovered class of transcription factors that contain motifs more commonly found in RNA-binding proteins. Previously, we have shown that SSAP specifically binds to its recognition sequence in both the double strand and the single strand form and that this DNA-binding activity is localized to the N-terminal RNA recognition motif domain. Three copies of this recognition sequence constitute an enhancer element that is directly responsible for directing the transcriptional activation of the sea urchin late histone H1 gene at the midblastula stage of embryogenesis. Here we show that the remainder of the SSAP polypeptide constitutes an extremely potent bipartite transcription activation domain that can function in a variety of mammalian cell lines. This activity is as much as 3 to 5 times stronger than VP16 at activating transcription and requires a large stretch of amino acids that contain glutamine-glycine rich and serine-threonine-basic amino acid rich regions. We present evidence that SSAP's activation domain shares targets that are also necessary for activation by E1a and VP16. Finally, SSAP's activation domain is found to participate in specific interactions in vitro with the basal transcription factors TATA-binding protein, TFIIB, TFIIF74, and dTAF(II) 110.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The mammalian form of the protozoan parasite Leishmania mexicana contains high activity of a cysteine proteinase (LmCPb) encoded on a tandem array of 19 genes (lmcpb). Homozygous null mutants for lmcpb have been produced by targeted gene disruption. All life-cycle stages of the mutant can be cultured in vitro, demonstrating that the gene is not essential for growth or differentiation of the parasite. However, the mutant exhibits a marked phenotype affecting virulence-- its infectivity to macrophages is reduced by 80%. The mutants are as efficient as wild-type parasites in invading macrophages but they only survive in a small proportion of the cells. However, those parasites that successfully infect these macrophages grow normally. Despite their reduced virulence, the mutants are still able to produce subcutaneous lesions in mice, albeit at a slower rate than wild-type parasites. The product of a single copy of lmcpb re-expressed in the null mutant was enzymatically active and restored infectivity toward macrophages to wild-type levels. Double null mutants created for lmcpb and lmcpa (another cathepsin L-like cysteine proteinase) have a similar phenotype to the lmcpb null mutant, showing that LmCPa does not compensate for the loss of LmCPb.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

MyoD is a member of a family of DNA-binding transcription factors that contain a helix-loop-helix (HLH) region involved in protein-protein interactions. In addition to self-association and DNA binding, MyoD associates with a number of other HLH-containing proteins, thereby modulating the strength and specificity of its DNA binding. Here, we examine the interactions of full-length MyoD with itself and with an HLH-containing peptide portion of an E2A gene product, E47-96. Analytical ultracentrifugation reveals that MyoD forms micelles that contain more than 100 monomers and are asymmetric and stable up to 36 degrees C. The critical micelle concentration increases slightly with temperature, but micelle size is unaffected. The micelles are in reversible equilibrium with monomer. Addition of E47-96 results in the stoichiometric formation of stable MyoD-E47-96 heterodimers and the depletion of micelles. Micelle formation effectively holds the concentration of free MyoD constant and equal to the critical micelle concentration. In the presence of micelles, the extent of all interactions involving free MyoD is independent of the total MyoD concentration and independent of one another. For DNA binding, the apparent relative specificity for different sites can be affected. In general, heterodimer-associated activities will depend on the self-association behavior of the partner protein.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Residues energetically linked to the allosteric transition of thrombin from its anticoagulant slow form to the procoagulant fast form have been identified by site-directed mutagenesis. The energetics of recognition by the two forms of the enzyme were probed by using a synthetic chromogenic substrate, fibrinogen, and hirudin. The thrombin residues E39, W60d, E192, D221, and D222 are linked to the slow-->fast transition and are part of an "allosteric core" through which events originating at the Na+ binding loop propagate to other regions of the enzyme. The thrombin residues Y76, W96, W148, and R173 lie at the periphery of the allosteric core, affect recognition of fibrinogen and hirudin to the same extent in both forms, and are not linked to the slow-->fast transition.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Human transcription initiation factor TFIID is composed of the TATA-binding polypeptide (TBP) and at least 13 TBP-associated factors (TAFs) that collectively or individually are involved in activator-dependent transcription. To investigate protein-protein interactions involved in TFIID assembly and in TAF-mediated activator functions, we have cloned and expressed cDNAs encoding human TAFII80 and TAFII31. Coimmunoprecipitation assays showed that TAFII80 interacted with TAFII250, TAFII31, TAFII20, and TBP, but not with TAFII55. Similar assays showed that TAFII80 interacted with TFIIE alpha and with TFIIF alpha (RAP74) but not with TFIIB, TFIIE beta, or TFIIF beta (RAP30). Further studies with TAFII80 mutations revealed three distinct interaction domains which fall within regions conserved in human TAFII80, Drosophila TAFII60, and yeast TAFII60. The N terminus of TAFII80 (residues 1-100) interacts with both TAFII31 and TAFII20, while two C-terminal regions are involved, respectively, in interactions with TAFII250 and TFIIF alpha (RAP74) (residues 203-276) and with TBP and TFIIE alpha (residues 377-505). The interactions between TAFII80 and general factors TFIIE alpha and TFIIF alpha (RAP74) could be important for recruitment of GTFs during activator-dependent transcription. Because TAFs 80, 31, and 20 show sequence similarities to histones H4, H3, and H2B, as well as some parallel interactions, this subset of TAFs may form a related core structure within TFIID.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The diphtheria tox repressor (DtxR) is a transition metal ion-dependent regulatory element that controls the expression of diphtheria toxin and several genes involved in the synthesis of siderophores in Corynebacterium diphtheriae. In the presence of transition metal ions apo-DtxR becomes activated and specifically binds to its target DNA sequences. We demonstrate by glutaraldehyde cross-linking that monomeric apo-DtxR is in weak equilibrium with a dimeric form and that upon addition of activating metal ions to the reaction mixture a dimeric complex is stabilized. Addition of the DNA-binding-defective mutant apo-DtxR(delta 1-47) to apo-DtxR in the absence of transition metal ions inhibits conversion of the apo-repressor to its activated DNA-binding form. We also show that the binding of Ni2+ to both apo-DtxR and apo-DtxR(delta 1-47) is cooperative and that upon ion binding there is a conformational change in the environment of the indole ring moiety of Trp-104. For the wild-type repressor the consequences of this conformational change include a shift in equilibrium toward dimer formation and activation of target DNA binding by the repressor. We conclude that the formation of DtxR homodimers is mediated through a protein-protein interaction domain that is also activated on metal ion binding.