974 resultados para Trade cost
Resumo:
Thin films of Cu2SnS3 (CTS) were deposited by the facile solution processed sol-gel route followed by a low-temperature annealing. The Cu-Sn-thiourea complex formation was analysed using Fourier Transform Infrared spectrophotometer (FTIR). The various phase transformations and the deposition temperature range for the initial precursor solution was determined using Thermogravimetric analysis (TGA) and Differential Scanning Calorimetry (DSC). X-Ray Diffraction (XRD) studies revealed the tetragonal phase formation of the CTS annealed films. Raman spectroscopy studies further confirmed the tetragonal phase formation and the absence of any deterioratory secondary phases. The morphological investigations and compositional analysis of the films were determined using Scanning Electron Microscopy (SEM) and Energy Dispersive Spectroscopy (EDS) respectively. Atomic Force Microscopy (AFM) was used to estimate the surface roughness of 1.3 nm. The absorption coefficient was found to be 10(4) cm(-1) and bandgap 1.3 eV which qualifies CTS to be a potential candidate for photovoltaic applications. The refractive index, extinction coefficient and relative permittivity of the film were measured by Spectroscopic ellipsometry. Hall effect measurements, indicated the p type nature of the films with a hole concentration of 2 x 10(18) cm(-3), electrical conductivity of 9 S/cm and a hole mobility of 29 cm(2)/V. The properties of CTS as deduced from the current study, present CTS as a potential absorber layer material for thin film solar cells. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
Predation risk can strongly constrain how individuals use time and space. Grouping is known to reduce an individual's time investment in costly antipredator behaviours. Whether grouping might similarly provide a spatial release from antipredator behaviour and allow individuals to use risky habitat more and, thus, improve their access to resources is poorly known. We used mosquito larvae, Aedes aegypti, to test the hypothesis that grouping facilitates the use of high-risk habitat. We provided two habitats, one darker, low-risk and one lighter, high-risk, and measured the relative time spent in the latter by solitary larvae versus larvae in small groups. We tested larvae reared under different resource levels, and thus presumed to vary in body condition, because condition is known to influence risk taking. We also varied the degree of contrast in habitat structure. We predicted that individuals in groups should use high-risk habitat more than solitary individuals allowing for influences of body condition and contrast in habitat structure. Grouping strongly influenced the time spent in the high-risk habitat, but, contrary to our expectation, individuals in groups spent less time in the high-risk habitat than solitary individuals. Furthermore, solitary individuals considerably increased the proportion of time spent in the high-risk habitat over time, whereas individuals in groups did not. Both solitary individuals and those in groups showed a small increase over time in their use of riskier locations within each habitat. The differences between solitary individuals and those in groups held across all resource and contrast conditions. Grouping may, thus, carry a poorly understood cost of constraining habitat use. This cost may arise because movement traits important for maintaining group cohesion (a result of strong selection on grouping) can act to exaggerate an individual preference for low-risk habitat. Further research is needed to examine the interplay between grouping, individual movement and habitat use traits in environments heterogeneous in risk and resources. (C) 2015 The Association for the Study of Animal Behaviour. Published by Elsevier Ltd. All rights reserved.
Resumo:
Campaigners are increasingly using online social networking platforms for promoting products, ideas and information. A popular method of promoting a product or even an idea is incentivizing individuals to evangelize the idea vigorously by providing them with referral rewards in the form of discounts, cash backs, or social recognition. Due to budget constraints on scarce resources such as money and manpower, it may not be possible to provide incentives for the entire population, and hence incentives need to be allocated judiciously to appropriate individuals for ensuring the highest possible outreach size. We aim to do the same by formulating and solving an optimization problem using percolation theory. In particular, we compute the set of individuals that are provided incentives for minimizing the expected cost while ensuring a given outreach size. We also solve the problem of computing the set of individuals to be incentivized for maximizing the outreach size for given cost budget. The optimization problem turns out to be non trivial; it involves quantities that need to be computed by numerically solving a fixed point equation. Our primary contribution is, that for a fairly general cost structure, we show that the optimization problems can be solved by solving a simple linear program. We believe that our approach of using percolation theory to formulate an optimization problem is the first of its kind. (C) 2016 Elsevier B.V. All rights reserved.
Resumo:
This paper evaluates cost and performance tradeoffs of alternative supercritical carbon dioxide (s-CO2) closed-loop Brayton cycle configurations with a concentrated solar heat source. Alternative s-CO2 power cycle configurations include simple, recompression, cascaded, and partial cooling cycles. Results show that the simple closed-loop Brayton cycle yielded the lowest power-block component costs while allowing variable temperature differentials across the s-CO2 heating source, depending on the level of recuperation. Lower temperature differentials led to higher sensible storage costs, but cycle configurations with lower temperature differentials (higher recuperation) yielded higher cycle efficiencies and lower solar collector and receiver costs. The cycles with higher efficiencies (simple recuperated, recompression, and partial cooling) yielded the lowest overall solar and power-block component costs for a prescribed power output.
Resumo:
A new DC plasma torch in which are jet states and deposition parameters can be regulated over a wide range has been built. It showed advantages in producing stable plasma conditions at a small gas flow rate. Plasma jets with and without magnetically rotated arcs could be generated. With straight are jet deposition, diamond films could be formed at a rate of 39 mu m/h on Mo substrates of Phi 25 mm, and the conversion rate of carbon in CH4 to diamond was less than 3%. Under magnetically rotated conditions, diamond films could be deposited uniformly in a range of Phi 40 mm at 30 mu m/h, with a quite low total gas flow rate and high carbon conversion rate of over 11%. Mechanisms of rapid and uniform deposition of diamond films with low gas consumption and high carbon transition efficiency are discussed.
Resumo:
Space time cube representation is an information visualization technique where spatiotemporal data points are mapped into a cube. Fast and correct analysis of such information is important in for instance geospatial and social visualization applications. Information visualization researchers have previously argued that space time cube representation is beneficial in revealing complex spatiotemporal patterns in a dataset to users. The argument is based on the fact that both time and spatial information are displayed simultaneously to users, an effect difficult to achieve in other representations. However, to our knowledge the actual usefulness of space time cube representation in conveying complex spatiotemporal patterns to users has not been empirically validated. To fill this gap we report on a between-subjects experiment comparing novice users error rates and response times when answering a set of questions using either space time cube or a baseline 2D representation. For some simple questions the error rates were lower when using the baseline representation. For complex questions where the participants needed an overall understanding of the spatiotemporal structure of the dataset, the space time cube representation resulted in on average twice as fast response times with no difference in error rates compared to the baseline. These results provide an empirical foundation for the hypothesis that space time cube representation benefits users when analyzing complex spatiotemporal patterns.
Resumo:
A 4Gbit/s directly modulated DBR laser is demonstrated with nanometre scale thermal tuning over an extended 20-70°C temperature range. >40dB side mode suppression over the entire temperature range is achieved. © 2005 Optical Society of America.
Uncooled DBR laser directly modulated at 3.125 Gb/s as athermal transmitter for low-cost WDM systems
Resumo:
An uncooled three-section tunable distributed Bragg reflector laser is demonstrated as an athermal transmitter for low-cost uncooled wavelength-division-multiplexing (WDM) systems with tight channel spacing. A ±0.02-nm thermal wavelength drift is achieved under continuous-wave operation up to 70 °C. Dynamic sidemode suppression ratio of greater than 35 dB is consistently obtained under 3.125-Gb/s direct modulation over a 20 °C-70 °C temperature range, with wavelength variation of as low as ±0.2 nm. This indicates that more than an order of magnitude reduction in coarse WDM channel spacing is possible using this source. © 2005 IEEE.