998 resultados para Tielke, Johann Gottlieb, 1731-87.
Resumo:
Nuclear bone scintigraphy is commonly used in the diagnosis of sacroiliac disease in horses. The aim of the present retrospective study was to determine if there was an association between radiopharmaceutical uptake pattern and radiographic appearance of the sacroiliac region in horses. Seventy-nine horses undergoing bone scintigraphy with Tc-99 m-HDP and radiography of the pelvis because of lameness or poor performance were studied. Subjective and semiquantitative methods were used to characterize and compare radiopharmaceutical uptake between horses. Ventrodorsal radiographs of the region were obtained and were evaluated. Subjectively, 70 horses (88.6%) had an abnormal uptake pattern. In nine horses, the sacroiliac region was normal (11.4%). There was no association between subjective evaluation of the scintigraphic images and semiquantitative methods. There was a significant association between radiopharmaceutical uptake and conformation (T- or Y-like form) and shape (butterfly-, wing-, leaf-, or horn-like) of the sacrum. The radiopharmaceutical uptake of the tubera sacralia was significantly higher in males (left side P = 0.002, right side P = 0.003). In conclusion, the conformation of the sacrum may play an important role in the scintigraphic appearance and may be the cause of increased radiopharmaceutical uptake.
Resumo:
We assessed the suitability of the radiolanthanide 155 Tb (t1/2 = 5.32 days, Eγ = 87 keV (32%), 105 keV (25%)) in combination with variable tumor targeted biomolecules using preclinical SPECT imaging. Methods 155Tb was produced at ISOLDE (CERN, Geneva, Switzerland) by high-energy (~ 1.4 GeV) proton irradiation of a tantalum target followed by ionization and on-line mass separation. 155 Tb was separated from isobar and pseudo-isobar impurities by cation exchange chromatography. Four tumor targeting molecules – a somatostatin analog (DOTATATE), a minigastrin analog (MD), a folate derivative (cm09) and an anti-L1-CAM antibody (chCE7) – were radiolabeled with 155 Tb. Imaging studies were performed in nude mice bearing AR42J, cholecystokinin-2 receptor expressing A431, KB, IGROV-1 and SKOV-3ip tumor xenografts using a dedicated small-animal SPECT/CT scanner. Results The total yield of the two-step separation process of 155 Tb was 86%. 155 Tb was obtained in a physiological l-lactate solution suitable for direct labeling processes. The 155 Tb-labeled tumor targeted biomolecules were obtained at a reasonable specific activity and high purity (> 95%). 155 Tb gave high quality, high resolution tomographic images. SPECT/CT experiments allowed excellent visualization of AR42J and CCK-2 receptor-expressing A431 tumors xenografts in mice after injection of 155 Tb-DOTATATE and 155 Tb-MD, respectively. The relatively long physical half-life of 155 Tb matched in particular the biological half-lives of 155 Tb-cm09 and 155 Tb-DTPA-chCE7 allowing SPECT imaging of KB tumors, IGROV-1 and SKOV-3ip tumors even several days after administration. Conclusions The radiolanthanide 155 Tb may be of particular interest for low-dose SPECT prior to therapy with a therapeutic match such as the β--emitting radiolanthanides 177Lu, 161 Tb, 166Ho, and the pseudo-radiolanthanide 90Y.