912 resultados para Thin Melanoma
Resumo:
One of the fundamental problems with image processing of petrographic thin sections is that the appearance (colour I intensity) of a mineral grain will vary with the orientation of the crystal lattice to the preferred direction of the polarizing filters on a petrographic microscope. This makes it very difficult to determine grain boundaries, grain orientation and mineral species from a single captured image. To overcome this problem, the Rotating Polarizer Stage was used to replace the fixed polarizer and analyzer on a standard petrographic microscope. The Rotating Polarizer Stage rotates the polarizers while the thin section remains stationary, allowing for better data gathering possibilities. Instead of capturing a single image of a thin section, six composite data sets are created by rotating the polarizers through 900 (or 1800 if quartz c-axes measurements need to be taken) in both plane and cross polarized light. The composite data sets can be viewed as separate images and consist of the average intensity image, the maximum intensity image, the minimum intensity image, the maximum position image, the minimum position image and the gradient image. The overall strategy used by the image processing system is to gather the composite data sets, determine the grain boundaries using the gradient image, classify the different mineral species present using the minimum and maximum intensity images and then perform measurements of grain shape and, where possible, partial crystallographic orientation using the maximum intensity and maximum position images.
Resumo:
SrMg^Rui-iOa thin films were made by using pulsed laser deposition on SrTiOa (100) substrates in either O2 or Ar atmosphere. The thin films were characterized by x-ray diffraction, energy dispersive x-ray microanalysis, dc resistivity measurement, and dc magnetization measurement. The effect of Mg doping was observed. As soon as the amount of Mg increased in SrMg-cRui-iOa thin films, the magnetization decreased, and the resistivity increased. It had little effect on the Curie temperature (transition temperature). The magnetization states of SrMgiRui-iOa thin films, for x < 0.15, are similar to SrRuOs films. X-ray diffraction results for SrMga-Rui-iOa thin films made in oxygen showed that the films are epitaxial. The thin films could not be well made in Ar atmosphere during laser ablation as there was no clear peak of SrMg^Rui-iOa in x-ray diffraction results. Substrate temperatures had an effect on the resistivity of the films. The residual resistivity ratios were increased by increasing substrate temperature. It was observed that the thickness of thin films are another factor for film quality: Thin films were epitaxial, but thicker films were not epitaxial.
Resumo:
Coarse grained sample with multiple fine grained domains. Clasts range from small to medium and sub-angular to sub-rounded. Mainly contains grain crushing (with grains crushed into one another) and short distance lineations. A few rotation structures are seen and fine grained sand domains can also be seen.
Resumo:
A coarse grained sample with clay rich domains. Grains range from small to medium and are sub-angular. Rotation structures can be seen around sub-rounded clasts. Lineations can be seen throughout the image, mainly short distance lineations. Small comet structures can also be seen throughout the images.
Resumo:
Coarse grained sample with grains varying from small to medium in size. They range from sub-angular to sub-rounded in shape. The sample is abundant in lineations and comet structures. Minor amounts of grain stacking are present. Inclusions of a clay rich, fine grained domain.
Resumo:
Coarse grained sediment with fine grained domains throughout. The clasts in the coarse grained domain range from sub-angular to sub-rounded. Short distance lineations are present throughout the sample. Organic rich domains (darker) are prevalent alongside fractured grains.
Resumo:
Dark brown sediment with mainly small grains. Clasts are sub-angular. Abundant in lineations, grain stacking, and minor grain crushing. Lineations are oriented in multiple directions.
Resumo:
Dark brown sediment with clasts ranging from small to large. The grains are sub-angular. Two main domains can be seen. Both are coarse grained, but one contains larger grains and potentially more clay material. Lineations are present throughout the sample in multiple directions. Minor rotation around a few larger clasts can be seen, as well as comet structures.
Resumo:
Brown, coarse grained sediment , with clay material. Clasts range from small to large, and sub-angular to sub-rounded. Organic material can be seen. Lineations are abundant. Grain stacking edge-to-edge grain crushing can also be seen. Organic material can be seen. Edge-to-edge grain crushing is seen throughout the image. Contains the inclusion of a finer domain.
Resumo:
Coarse grained brown sediment with angular-sub-angular grains. Contains mainly medium sized clasts with a few smaller aggregates. A dark organic rich domain can be seen within this sample. Grain crushing (edge-to-edge and into one another) can be seen alongside with grain stacks, and silt caps.
Resumo:
Coarse grained sample with sub-angular to sub-rounded clasts. Clasts range from small to medium sized. Major grain crushing seen throughout the sample. Grain stacking and lineations are also present. A dark organic rich domain can be seen within the sample.
Resumo:
Brown to dark brown sediment with small to medium sized clasts ranging from sub-angular to sub-rounded. This sample contains a coarse grained domain and a fine grained domain. Clear boundaries can be seen. Grain stacking can be seen in the coarse domain, while lineations are the dominant microstructure in the fine grained domain. Minor grain crushing can also be seen. Some of the coarser domain is rich in clay and organics.
Resumo:
Coarse brown sediment with clasts ranging from small to medium. Clasts are sub-angular to sub-rounded. Rotation structures can be seen throughout the image. Multiple rotations can be seen around single clasts. Minor amounts of comet structures and grain stacking can also be seen.
Resumo:
Dark brown sediment with sub-angular to sub-rounded grains, that range from small to medium in size. Lineations with fractured grains are abundant, and grain crushing can also be seen. Minor rotation can also be seen.
Resumo:
Dark brown sediment with manly small sized clasts. Some medium and large clasts also present. Clasts range from sub-angular to sub-rounded. Lineations can be seen throughout the sample. Minor patches of clay/organic rich domains can also be seen as well as minor grain stacking.