975 resultados para Tgf-beta Receptor
Resumo:
The gamma-aminobutyric acid type A (GABA(A)) receptor mediates fast inhibitory synaptic transmission in the CNS. Dysfunction of the GABA(A) receptor would be expected to cause neuronal hyperexcitability, a phenomenon linked with epileptogenesis. We have investigated the functional consequences of an arginine-to-glutamine mutation at position 43 within the GABA(A) gamma(2)-subunit found in a family with childhood absence epilepsy and febrile seizures. Rapid-application experiments performed on receptors expressed in HEK-293 cells demonstrated that the mutation slows GABA(A) receptor deactivation and increases the rate of desensitization, resulting in an accumulation of desensitized receptors during repeated, short applications. In Xenopus laevis oocytes, two-electrode voltage-clamp analysis of steady-state currents obtained from alpha(1)beta(2)gamma(2) or alpha(1)beta(2)gamma(2)(R43Q) receptors did not reveal any differences in GABA sensitivity. However, differences in the benzodiazepine pharmacology of mutant receptors were apparent. Mutant receptors expressed in oocytes displayed reduced sensitivity to diazepam and flunitrazepam but not the imiclazopyricline zolpidem. These results provide evidence of impaired GABA(A) receptor function that could decrease the efficacy of transmission at inhibitory synapses, possibly generating a hyperexcitable neuronal state in thalamocortical networks of epileptic patients possessing the mutant subunit.
Resumo:
To identify novel cytokine-related genes, we searched the set of 60,770 annotated RIKEN mouse cDNA clones (FANTOM2 clones), using keywords such as cytokine itself or cytokine names (such as interferon, interleukin, epidermal growth factor, fibroblast growth factor, and transforming growth factor). This search produced 108 known cytokines and cytokine-related products such as cytokine receptors, cytokine-associated genes, or their products (enhancers, accessory proteins, cytokine-induced genes). We found 15 clusters of FANTOM2 clones that are candidates for novel cytokine-related genes. These encoded products with strong sequence similarity to guanylate-binding protein (GBP-5), interleukin-1 receptor-associated kinase 2 (IRAK-2), interleukin 20 receptor alpha isoform 3, a member of the interferon-inducible proteins of the Ifi 200 cluster, four members of the membrane-associated family 1-8 of interferon-inducible proteins, one p27-like protein, and a hypothetical protein containing a Toll/Interleukin receptor domain. All four clones representing novel candidates of gene products from the family contain a novel highly conserved cross-species domain. Clones similar to growth factor-related products included transforming growth factor beta-inducible early growth response protein 2 (TIEG-2), TGFbeta-induced factor 2, integrin beta-like 1, latent TGF-binding protein 4S, and FGF receptor 4B. We performed a detailed sequence analysis of the candidate novel genes to elucidate their likely functional properties.
Resumo:
Activation of the granulocyte-macrophage colony-stimulating factor (GM-CSF) family of receptors promotes the survival, proliferation, and differentiation of cells of the myeloid compartment. Several signaling pathways are activated downstream of the receptor, however it is not clear how these induce specific biologic outcomes. We have previously identified 2 classes of constitutively active mutants of the shared signaling subunit, human (h) betac, of the human GM-CSF/interieukin-3 (IL-3)/IL-5 receptors that exhibit different modes of signaling. In a factor-dependent bipotential myeloid cell line, FDB1, an activated mutant containing a substitution in the transmembrane domain (V449E) induces factor-independent proliferation and survival, while mutants in the extracellular domain induce factor-independent granulocyte-macrophage differentiation. Here we have used further mutational analysis to demonstrate that there are nonredundant functions for several regions of the cytoplasmic domain with regard to mediating proliferation, viability, and differentiation, which have not been revealed by previous studies with the wild-type GM-CSF receptor. This unique lack of redundancy has revealed an association of a conserved membrane-proximal region with viability signaling and a critical but distinct role for tyrosine 577 in the activities of each class of mutant.
Resumo:
Photodynamic therapy involves administration of a photosensitizing drug and its subsequent activation by visible light of the appropriate wavelength. Several approaches to increasing the specificity of photosensitizers for cancerous tissues and, in particular, through their conjugation to ligands that are directed against tumor-associated antigens have been investigated. Here, we have studied the delivery of the photocytotoxic porphyrin compound TPP(p-O-beta-D-GluOH)(3) into tumor cells that overexpress the glycosphingolipid Gb3, using the Gb3-binding nontoxic B-subunit of Shiga toxin (STxB) as a vector. To allow for site-directed chemical coupling, an STxB variant carrying a free sulfhydryl moiety at its C-terminal end has been used. Binding affinity, cellular uptake, singlet oxygen quantum yield, and phototoxicity of the conjugate have been examined. Despite some effect of coupling on both the photophysical properties of TPP(p-O-beta-D-GluOH)(3) and the affinity of STxB for its receptor, the conjugate exhibited a higher photocytotoxic activity than the photosensitizer alone and was exquisitely selective for Gb3-expressing tumor cells. Furthermore, our data strongly suggest that STxB-mediated retrograde delivery of the photosensitizer to the biosynthetic/secretory pathway is critical for optimal cytotoxic activity. In conclusion, a strong rationale for using retrograde delivery tools such as STxB in combination with photosensitizing agents for the photodynamic therapy of tumors is presented.
Resumo:
IL-1 is a key proinflammatory driver of several autoimmune diseases including juvenile inflammatory arthritis, diseases with mutations in the NALP/cryopyrin complex and Crohn’s disease, and is genetically or clinically associated with many others. IL-1 is a pleiotropic proinflammatory cytokine; however the mechanisms by which increased IL-1 signaling promotes autoreactive T cell activity are not clear. Here we show that autoimmune-prone NOD and IL-1 receptor antagonist-deficient C57BL/6 mice both produce high levels of IL-1, which drives autoreactive effector cell expansion. IL-1beta drives proliferation and cytokine production by CD4+CD25+FoxP3– effector/memory T cells, attenuates CD4+CD25+FoxP3+ regulatory T cell function, and allows escape of CD4+CD25– autoreactive effectors from suppression. Thus, inflammation or constitutive overexpression of IL-1beta in a genetically predisposed host can promote autoreactive effector T cell expansion and function, which attenuates the ability of regulatory T cells to maintain tolerance to self.
Resumo:
IL-1 is a key proinflammatory driver of several autoimmune diseases including juvenile inflammatory arthritis, diseases with mutations in the NALP/cryopyrin complex and Crohn's disease, and is genetically or clinically associated with many others. IL-1 is a pleiotropic proinflammatory cytokine; however the mechanisms by which increased IL-1 signaling promotes autoreactive T cell activity are not clear. Here we show that autoimmune-prone NOD and IL-1 receptor antagonist-deficient C57BL/6 mice both produce high levels of IL-1, which drives autoreactive effector cell expansion. IL-1 beta drives proliferation and cytokine production by CD4(+)CD25(+)FoxP3(-) effector/memory T cells, attenuates CD4(+)CD25(+)FoxP3(+) regulatory T cell function, and allows escape of CD4(+)CD25(-) autoreactive effectors from suppression. Thus, inflammation or constitutive overexpression of IL-1 beta in a genetically predisposed host can promote autoreactive effector T cell expansion and function, which attenuates the ability of regulatory T cells to maintain tolerance to self.
Resumo:
This report describes the identification of a murine cytomegalovirus (MCMV) G protein-coupled receptor (GCR) homolog. This open reading frame (M33) is most closely related to, and collinear with, human cytomegalovirus UL33, and homologs are also present in human herpesvirus 6 and 7 (U12 for both viruses). Conserved counterparts in the sequenced alpha- or gammaherpesviruses have not been identified to date, suggesting that these genes encode proteins which are important for the biological characteristics of betaherpesviruses. We have detected transcripts for both UL33 and M33 as early as 3 or 4 h postinfection, and these reappear at late times. In addition, we have identified N-terminal splicing for both the UL33 and M33 RNA transcripts. For both open reading frames, splicing results in the introduction of amino acids which are highly conserved among known GCRs. To characterise the function of the M33 in the natural host, two independent MCMV recombinant viruses were prepared, each of which possesses an M33 open reading frame which has been disrupted with the beta-galactosidase gene. While the recombinant M33 null viruses showed no phenotypic differences in replication from wild-type MCMV in primary mouse embryo fibroblasts in vitro, they showed severely restricted growth in the salivary glands of infected mice. These data suggest that M33 plays an important role in vivo, in particular in the dissemination to or replication in the salivary gland, and provide the first evidence for the function of a viral GCR homolog in vivo.
Resumo:
1 Chronic treatment of patients with beta-blockers causes atrial inotropic hyperresponsiveness through beta(2)-adrenoceptors, 5-HT4 receptors and H-2-receptors but apparently not through beta(1)-adrenoceptors despite data claiming an increased beta(1)-adrenoceptor density from homogenate binding studies. We have addressed the question of beta(1)-adrenoceptor sensitivity by determining the inotropic potency and intrinsic activity of the beta(1)-adrenoceptor selective partial agonist (-)-RO363 and by carrying out both homogenate binding and quantitative beta-adrenoceptor autoradiography in atria obtained from patients treated or not treated with beta-blockers. In the course of the experiments it became apparent that (-)-RO363 also may cause agonistic effects through the third atrial beta-adrenoceptor. To assess whether (-)-RO363 also caused agonistic effects through beta(3)-adrenoceptors we studied its relaxant effects in rat colon and guinea-pig ileum, as well as receptor binding and adenylyl cyclase stimulation of chinese hamster ovary (CHO) cells expressing human beta(3)-adrenoceptors. 2 beta-Adrenoceptors were labelled with (-)-[I-125]-cyanopindolol. The density of both beta(1)- and beta(2)-adrenoceptors was unchanged in the 2 groups, as assessed with both quantitative receptor autoradiography and homogenate binding. The affinities of (-)-RO363 for beta(1)-adrenoceptors (pK(i) = 8.0-7.7) and beta(2)-adrenoceptors (pK(i) = 6.1-5.8) were not significantly different in the two groups. 3 (-)-RO363 increased atrial force with a pEC(50) of 8.2 (beta-blocker treated) and 8.0 (non-beta-blocker treated) and intrinsic activity with respect to (-)-isoprenaline of 0.80 (beta-blocker treated) and 0.54 (non-beta-blocker treated) (P<0.001) and with respect to Ca2+ (7 mM) of 0.65 (beta-blocker treated) and 0.45 (non-beta-blocker treated) (P<0.01). The effects of (-)-RO363 were resistant to antagonism by the beta(2)-adrenoceptor antagonist, ICI 118,551 (50 nM). The effects of 0.3-10 nM (-)-RO363 were antagonized by 3-10 nM of the beta(1)-adrenoceptor selective antagonist CGP 20712A. The effects of 20-1000 nM (-)-RO363 were partially resistant to antagonism by 30-300 nM CGP 20712A. 4 (-)-RO363 relaxed the rat colon, partially precontracted by 30 mM KCl, with an intrinsic activity of 0.97 compared to (-)-isoprenaline. The concentration-effect curve to (-)-RO363 revealed 2 components, one antagonized by (-)-propranolol (200 nM) with pEC(50)=8.5 and fraction 0.66, the other resistant to (-)-propranolol (200 nM) with pEC(50)=5.6 and fraction 0.34 of maximal relaxation. 5 (-)-RO363 relaxed the longitudinal muscle of guinea-pig ileum, precontracted by 0.5 mu M histamine, with intrinsic activity of 1.0 compared to (-)-isoprenaline and through 2 components, one antagonized by (-)-propranolol (200 nM) with pEC(50)=8.7 and fraction 0.67, the other resistant to (-)-propranolol with pEC(50)=4.9 and fraction 0.33 of maximal relaxation. 6 (-)-RO363 stimulated the adenylyl cyclase of CHO cells expressing human beta(3)-adrenoceptors with pEC(50)=5.5 and intrinsic activity 0.74 with respect to (-)-isoprenaline (pEC(50)=5.9). (-)-RO363 competed for binding with [I-125]cyanopindolol at human beta(3)-adrenoceptors transfected into CHO cells with pK(i)=4.5. (-)-Isoprenaline (pk(i)=5.2) and (-)-CGP 12177A (pK(i)=6.1) also competed for binding at human beta(2)-adrenoceptors. 7 We conclude that under conditions used in this study, (-)-RO363 is a potent partial agonist for human beta(1)- and beta(3)-adrenoceptors and appears also to activate the third human atrial beta-adrenoceptor. (-)-RO363 relaxes mammalian gut through both beta(1)- and beta(3)-adrenoceptors. (-)-RO363, used as a beta(1)-adrenoceptor selective tool, confirms previous findings with (-)-noradrenaline that beta(1)-adrenoceptor mediated atrial effects are only slightly enhanced by chronic treatment of patients with beta-blockers. Chronic treatment with beta(1)-adrenoceptor-selective blockers does not significantly increase the density of human atrial beta(1)- and beta(2)-adrenoceptors.
Resumo:
Fast synaptic neurotransmission is mediated by transmitter-activated conformational changes in ligand-gated ion channel receptors, culminating in opening of the integral ion channel pore. Human hereditary hyperekplexia, or startle disease, is caused by mutations in both the intracellular or extracellular loops flanking the pore-lining M2 domain of the glycine receptor alpha 1 subunit. These flanking domains are designated the M1-M2 loop and the M2-M3 loop respectively. We show that four startle disease mutations and six additional alanine substitution mutations distributed throughout both loops result in uncoupling of the ligand binding sites from the channel activation gate. We therefore conclude that the M1-M2 and M2-M3 loops act in parallel to activate the channel. Their locations strongly suggest that they act as hinges governing allosteric control of the M2 domain. As the members of the ligand-gated ion channel superfamily share a common structure, this signal transduction model may apply to all members of this superfamily.
Resumo:
Papillomaviruses (PVs) bind in a specific and saturable fashion to a range of epithelial and other cell lines. Treatment of cells with trypsin markedly reduces their ability to bind virus particles, suggesting that binding is mediated via a cell membrane protein. We have investigated the interaction bf human PV type 6b L1 virus-like particles (VLPs) with two epithelial cell lines, CV-1 and HaCaT, which bind VLPs, and a B-cell line (DG75) previously shown not to bind VLPs. Immunoprecipitation of a mixture of PV VLPs with [S-35]methionine-labeled cell extracts and with biotin-labeled cell surface proteins identified four proteins from CV-1 and HaCaT cells of 220, 120, 87, and 35 kDa that reacted with VLPs and were not present in DG75 cells. The alpha(6) beta(4) integrin complex has subunits corresponding to the VLP precipitated proteins, and the tissue distribution of this complex suggested that it was a candidate human PV receptor. Monoclonal antibodies (MAbs) to the alpha(6) or beta(4) integrin subunits precipitated VLPs from a mixture of CV-1 cell proteins and VLPs, whereas MAbs to other integrin subunits did not. An alpha(6) integrin-specific MAb (GoH3) inhibited VLP binding to CV-1 and HaCaT cells, whereas an anti-beta(4) integrin MAb and a range of integrin-specific and other MAbs did not. Furthermore, human laminin, the natural ligand for the alpha(6) beta(4) integrin, was able to block VLP binding. By use of sections of monkey esophagus, the distribution of alpha(6), integrin expression in the basal epithelium was shown to coincide with the distribution of bound VLPs. Taken together, these data suggest that VLPs bind specifically to the alpha(6) integrin subunit and that integrin complexes containing alpha(6) integrin complexed with either beta(1) or beta(4) integrins may act as a receptor for PV binding and entry into epithelial cells.
Resumo:
A conformationally biased decapeptide agonist of human C5a (C5a(65-74)Y65,F67,P69,P71,D-Ala73 or YSFKPMPLaR) was used as a functional probe of the C5a receptor (C5aR) in order to understand the conformational features in the C-terminal effector region of C5a that are important for C5aR binding and signal transduction. YSFKPMPLaR was a potent, full agonist of C5a, but at higher concentrations had a superefficacious effect compared to the natural factor. The maximal efficacy of this analogue was 216 +/- 56% that of C5a in stimulating the release of beta-glucuronidase from human neutrophils. C5aR activation and binding curves both occurred in the same concentration range with YSFKPMPLaR, characteristics not observed with natural C5a or more conformationally flexible C-terminal agonists. YSFKPMPLaR was then used as a C-terminal effector template onto which was synthesized various C5aR binding determinants from the N-terminal core domain of the natural factor. In general, the presence of N-terminal binding determinants had little effect on either potency or binding affinity when the C-terminal effector region was presented to the C5aR in this biologically active conformation. However, one peptide, C5a(12-20)-Ahx-YSFKPMPLaR, expressed a 100-fold increase in affinity for the neutrophil C5aR and a 6-fold increase in potency relative to YSFKPMPLaR. These analyses showed that the peptides used in this study have up to 25% of the potency of C5a in human fetal artery and up to 5% of the activity of C5a in the PMN enzyme release assay.
Resumo:
The inhibitory glycine receptor (GlyR) is a member of the ligand-gated ion channel receptor superfamily. The GlyR comprises a pentameric complex that forms a chloride-selective transmembrane channel, which is predominantly expressed in the spinal cord and brain stem. We review the pharmacological and physiological properties of the GlyR and relate this information to more recent insights that have been obtained through the cloning and recombinant expression of the GlyR subunits. We also discuss insights into our understanding of GlyR structure and function that have been obtained by the genetic characterisation of various heritable disorders of glycinergic neurotransmission. (C) 1997 Elsevier Science Inc.