850 resultados para Text-Based Image Retrieval


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Document ranking is an important process in information retrieval (IR). It presents retrieved documents in an order of their estimated degrees of relevance to query. Traditional document ranking methods are mostly based on the similarity computations between documents and query. In this paper we argue that the similarity-based document ranking is insufficient in some cases. There are two reasons. Firstly it is about the increased information variety. There are far too many different types documents available now for user to search. The second is about the users variety. In many cases user may want to retrieve documents that are not only similar but also general or broad regarding a certain topic. This is particularly the case in some domains such as bio-medical IR. In this paper we propose a novel approach to re-rank the retrieved documents by incorporating the similarity with their generality. By an ontology-based analysis on the semantic cohesion of text, document generality can be quantified. The retrieved documents are then re-ranked by their combined scores of similarity and the closeness of documents’ generality to the query’s. Our experiments have shown an encouraging performance on a large bio-medical document collection, OHSUMED, containing 348,566 medical journal references and 101 test queries.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Obtaining wind vectors over the ocean is important for weather forecasting and ocean modelling. Several satellite systems used operationally by meteorological agencies utilise scatterometers to infer wind vectors over the oceans. In this paper we present the results of using novel neural network based techniques to estimate wind vectors from such data. The problem is partitioned into estimating wind speed and wind direction. Wind speed is modelled using a multi-layer perceptron (MLP) and a sum of squares error function. Wind direction is a periodic variable and a multi-valued function for a given set of inputs; a conventional MLP fails at this task, and so we model the full periodic probability density of direction conditioned on the satellite derived inputs using a Mixture Density Network (MDN) with periodic kernel functions. A committee of the resulting MDNs is shown to improve the results.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Obtaining wind vectors over the ocean is important for weather forecasting and ocean modelling. Several satellite systems used operationally by meteorological agencies utilise scatterometers to infer wind vectors over the oceans. In this paper we present the results of using novel neural network based techniques to estimate wind vectors from such data. The problem is partitioned into estimating wind speed and wind direction. Wind speed is modelled using a multi-layer perceptron (MLP) and a sum of squares error function. Wind direction is a periodic variable and a multi-valued function for a given set of inputs; a conventional MLP fails at this task, and so we model the full periodic probability density of direction conditioned on the satellite derived inputs using a Mixture Density Network (MDN) with periodic kernel functions. A committee of the resulting MDNs is shown to improve the results.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This report presents and evaluates a novel idea for scalable lossy colour image coding with Matching Pursuit (MP) performed in a transform domain. The benefits of the idea of MP performed in the transform domain are analysed in detail. The main contribution of this work is extending MP with wavelets to colour coding and proposing a coding method. We exploit correlations between image subbands after wavelet transformation in RGB colour space. Then, a new and simple quantisation and coding scheme of colour MP decomposition based on Run Length Encoding (RLE), inspired by the idea of coding indexes in relational databases, is applied. As a final coding step arithmetic coding is used assuming uniform distributions of MP atom parameters. The target application is compression at low and medium bit-rates. Coding performance is compared to JPEG 2000 showing the potential to outperform the latter with more sophisticated than uniform data models for arithmetic coder. The results are presented for grayscale and colour coding of 12 standard test images.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This study presents a detailed contrastive description of the textual functioning of connectives in English and Arabic. Particular emphasis is placed on the organisational force of connectives and their role in sustaining cohesion. The description is intended as a contribution for a better understanding of the variations in the dominant tendencies for text organisation in each language. The findings are expected to be utilised for pedagogical purposes, particularly in improving EFL teaching of writing at the undergraduate level. The study is based on an empirical investigation of the phenomenon of connectivity and, for optimal efficiency, employs computer-aided procedures, particularly those adopted in corpus linguistics, for investigatory purposes. One important methodological requirement is the establishment of two comparable and statistically adequate corpora, also the design of software and the use of existing packages and to achieve the basic analysis. Each corpus comprises ca 250,000 words of newspaper material sampled in accordance to a specific set of criteria and assembled in machine readable form prior to the computer-assisted analysis. A suite of programmes have been written in SPITBOL to accomplish a variety of analytical tasks, and in particular to perform a battery of measurements intended to quantify the textual functioning of connectives in each corpus. Concordances and some word lists are produced by using OCP. Results of these researches confirm the existence of fundamental differences in text organisation in Arabic in comparison to English. This manifests itself in the way textual operations of grouping and sequencing are performed and in the intensity of the textual role of connectives in imposing linearity and continuity and in maintaining overall stability. Furthermore, computation of connective functionality and range of operationality has identified fundamental differences in the way favourable choices for text organisation are made and implemented.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Owing to the rise in the volume of literature, problems arise in the retrieval of required information. Various retrieval strategies have been proposed, but most of that are not flexible enough for their users. Specifically, most of these systems assume that users know exactly what they are looking for before approaching the system, and that users are able to precisely express their information needs according to l aid- down specifications. There has, however, been described a retrieval program THOMAS which aims at satisfying incompletely- defined user needs through a man- machine dialogue which does not require any rigid queries. Unlike most systems, Thomas attempts to satisfy the user's needs from a model which it builds of the user's area of interest. This model is a subset of the program's "world model" - a database in the form of a network where the nodes represent concepts since various concepts have various degrees of similarities and associations, this thesis contends that instead of models which assume equal levels of similarities between concepts, the links between the concepts should have values assigned to them to indicate the degree of similarity between the concepts. Furthermore, the world model of the system should be structured such that concepts which are related to one another be clustered together, so that a user- interaction would involve only the relevant clusters rather than the entire database such clusters being determined by the system, not the user. This thesis also attempts to link the design work with the current notion in psychology centred on the use of the computer to simulate human cognitive processes. In this case, an attempt has been made to model a dialogue between two people - the information seeker and the information expert. The system, called Thomas-II, has been implemented and found to require less effort from the user than Thomas.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this paper, we propose a text mining method called LRD (latent relation discovery), which extends the traditional vector space model of document representation in order to improve information retrieval (IR) on documents and document clustering. Our LRD method extracts terms and entities, such as person, organization, or project names, and discovers relationships between them by taking into account their co-occurrence in textual corpora. Given a target entity, LRD discovers other entities closely related to the target effectively and efficiently. With respect to such relatedness, a measure of relation strength between entities is defined. LRD uses relation strength to enhance the vector space model, and uses the enhanced vector space model for query based IR on documents and clustering documents in order to discover complex relationships among terms and entities. Our experiments on a standard dataset for query based IR shows that our LRD method performed significantly better than traditional vector space model and other five standard statistical methods for vector expansion.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this paper, we present syllable-based duration modelling in the context of a prosody model for Standard Yorùbá (SY) text-to-speech (TTS) synthesis applications. Our prosody model is conceptualised around a modular holistic framework. This framework is implemented using the Relational Tree (R-Tree) techniques. An important feature of our R-Tree framework is its flexibility in that it facilitates the independent implementation of the different dimensions of prosody, i.e. duration, intonation, and intensity, using different techniques and their subsequent integration. We applied the Fuzzy Decision Tree (FDT) technique to model the duration dimension. In order to evaluate the effectiveness of FDT in duration modelling, we have also developed a Classification And Regression Tree (CART) based duration model using the same speech data. Each of these models was integrated into our R-Tree based prosody model. We performed both quantitative (i.e. Root Mean Square Error (RMSE) and Correlation (Corr)) and qualitative (i.e. intelligibility and naturalness) evaluations on the two duration models. The results show that CART models the training data more accurately than FDT. The FDT model, however, shows a better ability to extrapolate from the training data since it achieved a better accuracy for the test data set. Our qualitative evaluation results show that our FDT model produces synthesised speech that is perceived to be more natural than our CART model. In addition, we also observed that the expressiveness of FDT is much better than that of CART. That is because the representation in FDT is not restricted to a set of piece-wise or discrete constant approximation. We, therefore, conclude that the FDT approach is a practical approach for duration modelling in SY TTS applications. © 2006 Elsevier Ltd. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Traditional content-based filtering methods usually utilize text extraction and classification techniques for building user profiles as well as for representations of contents, i.e. item profiles. These methods have some disadvantages e.g. mismatch between user profile terms and item profile terms, leading to low performance. Some of the disadvantages can be overcome by incorporating a common ontology which enables representing both the users' and the items' profiles with concepts taken from the same vocabulary. We propose a new content-based method for filtering and ranking the relevancy of items for users, which utilizes a hierarchical ontology. The method measures the similarity of the user's profile to the items' profiles, considering the existing of mutual concepts in the two profiles, as well as the existence of "related" concepts, according to their position in the ontology. The proposed filtering algorithm computes the similarity between the users' profiles and the items' profiles, and rank-orders the relevant items according to their relevancy to each user. The method is being implemented in ePaper, a personalized electronic newspaper project, utilizing a hierarchical ontology designed specifically for classification of News items. It can, however, be utilized in other domains and extended to other ontologies.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper presents implementation of a low-power tracking CMOS image sensor based on biological models of attention. The presented imager allows tracking of up to N salient targets in the field of view. Employing "smart" image sensor architecture, where all image processing is implemented on the sensor focal plane, the proposed imager allows reduction of the amount of data transmitted from the sensor array to external processing units and thus provides real time operation. The imager operation and architecture are based on the models taken from biological systems, where data sensed by many millions of receptors should be transmitted and processed in real time. The imager architecture is optimized to achieve low-power dissipation both in acquisition and tracking modes of operation. The tracking concept is presented, the system architecture is shown and the circuits description is discussed.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

More and more researchers have realized that ontologies will play a critical role in the development of the Semantic Web, the next generation Web in which content is not only consumable by humans, but also by software agents. The development of tools to support ontology management including creation, visualization, annotation, database storage, and retrieval is thus extremely important. We have developed ImageSpace, an image ontology creation and annotation tool that features (1) full support for the standard web ontology language DAML+OIL; (2) image ontology creation, visualization, image annotation and display in one integrated framework; (3) ontology consistency assurance; and (4) storing ontologies and annotations in relational databases. It is expected that the availability of such a tool will greatly facilitate the creation of image repositories as islands of the Semantic Web.