933 resultados para Terrorist attacks


Relevância:

10.00% 10.00%

Publicador:

Resumo:

There has been significant research in the field of database watermarking recently. However, there has not been sufficient attention given to the requirement of providing reversibility (the ability to revert back to original relation from watermarked relation) and blindness (not needing the original relation for detection purpose) at the same time. This model has several disadvantages over reversible and blind watermarking (requiring only the watermarked relation and secret key from which the watermark is detected and the original relation is restored) including the inability to identify the rightful owner in case of successful secondary watermarking, the inability to revert the relation to the original data set (required in high precision industries) and the requirement to store the unmarked relation at a secure secondary storage. To overcome these problems, we propose a watermarking scheme that is reversible as well as blind. We utilize difference expansion on integers to achieve reversibility. The major advantages provided by our scheme are reversibility to a high quality original data set, rightful owner identification, resistance against secondary watermarking attacks, and no need to store the original database at a secure secondary storage. We have implemented our scheme and results show the success rate is limited to 11% even when 48% tuples are modified.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

There has been significant research in the field of database watermarking recently. However, there has not been sufficient attention given to the requirement of providing reversibility (the ability to revert back to original relation from watermarked relation) and blindness (not needing the original relation for detection purpose) at the same time. This model has several disadvantages over reversible and blind watermarking (requiring only the watermarked relation and secret key from which the watermark is detected and the original relation is restored) including the inability to identify the rightful owner in case of successful secondary watermarking, the inability to revert the relation to the original data set (required in high precision industries) and the requirement to store the unmarked relation at a secure secondary storage. To overcome these problems, we propose a watermarking scheme that is reversible as well as blind. We utilize difference expansion on integers to achieve reversibility. The major advantages provided by our scheme are reversibility to a high quality original data set, rightful owner identification, resistance against secondary watermarking attacks, and no need to store the original database at a secure secondary storage. We have implemented our scheme and results show the success rate is limited to 11% even when 48% tuples are modified.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper we present truncated differential analysis of reduced-round LBlock by computing the differential distribution of every nibble of the state. LLR statistical test is used as a tool to apply the distinguishing and key-recovery attacks. To build the distinguisher, all possible differences are traced through the cipher and the truncated differential probability distribution is determined for every output nibble. We concatenate additional rounds to the beginning and end of the truncated differential distribution to apply the key-recovery attack. By exploiting properties of the key schedule, we obtain a large overlap of key bits used in the beginning and final rounds. This allows us to significantly increase the differential probabilities and hence reduce the attack complexity. We validate the analysis by implementing the attack on LBlock reduced to 12 rounds. Finally, we apply single-key and related-key attacks on 18 and 21-round LBlock, respectively.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We show that the LASH-x hash function is vulnerable to attacks that trade time for memory, including collision attacks as fast as 2(4x/11) and preimage attacks as fast as 2(4x/7). Moreover, we briefly mention heuristic lattice based collision attacks that use small memory but require very long messages that are expected to find collisions much faster than 2 x/2. All of these attacks exploit the designers’ choice of an all zero IV. We then consider whether LASH can be patched simply by changing the IV. In this case, we show that LASH is vulnerable to a 2(7x/8) preimage attack. We also show that LASH is trivially not a PRF when any subset of input bytes is used as a secret key. None of our attacks depend upon the particular contents of the LASH matrix – we only assume that the distribution of elements is more or less uniform.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

RC4(n, m) is a stream cipher based on RC4 and is designed by G. Gong et al. It can be seen as a generalization of the famous RC4 stream cipher designed by Ron Rivest. The authors of RC4(n, m) claim that the cipher resists all the attacks that are successful against the original RC4. The paper reveals cryptographic weaknesses of the RC4(n, m) stream cipher. We develop two attacks. The first one is based on non-randomness of internal state and allows to distinguish it from a truly random cipher by an algorithm that has access to 24·n bits of the keystream. The second attack exploits low diffusion of bits in the KSA and PRGA algorithms and recovers all bytes of the secret key. This attack works only if the initial value of the cipher can be manipulated. Apart from the secret key, the cipher uses two other inputs, namely, initial value and initial vector. Although these inputs are fixed in the cipher specification, some applications may allow the inputs to be under the attacker control. Assuming that the attacker can control the initial value, we show a distinguisher for the cipher and a secret key recovery attack that for the L-bit secret key, is able to recover it with about (L/n) · 2n steps. The attack has been implemented on a standard PC and can reconstruct the secret key of RC(8, 32) in less than a second.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Rakaposhi is a synchronous stream cipher, which uses three main components: a non-linear feedback shift register (NLFSR), a dynamic linear feedback shift register (DLFSR) and a non-linear filtering function (NLF). NLFSR consists of 128 bits and is initialised by the secret key K. DLFSR holds 192 bits and is initialised by an initial vector (IV). NLF takes 8-bit inputs and returns a single output bit. The work identifies weaknesses and properties of the cipher. The main observation is that the initialisation procedure has the so-called sliding property. The property can be used to launch distinguishing and key recovery attacks. The distinguisher needs four observations of the related (K,IV) pairs. The key recovery algorithm allows to discover the secret key K after observing 29 pairs of (K,IV). Based on the proposed related-key attack, the number of related (K,IV) pairs is 2(128 + 192)/4 pairs. Further the cipher is studied when the registers enter short cycles. When NLFSR is set to all ones, then the cipher degenerates to a linear feedback shift register with a non-linear filter. Consequently, the initial state (and Secret Key and IV) can be recovered with complexity 263.87. If DLFSR is set to all zeros, then NLF reduces to a low non-linearity filter function. As the result, the cipher is insecure allowing the adversary to distinguish it from a random cipher after 217 observations of keystream bits. There is also the key recovery algorithm that allows to find the secret key with complexity 2 54.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Most previous work on unconditionally secure multiparty computation has focused on computing over a finite field (or ring). Multiparty computation over other algebraic structures has not received much attention, but is an interesting topic whose study may provide new and improved tools for certain applications. At CRYPTO 2007, Desmedt et al introduced a construction for a passive-secure multiparty multiplication protocol for black-box groups, reducing it to a certain graph coloring problem, leaving as an open problem to achieve security against active attacks. We present the first n-party protocol for unconditionally secure multiparty computation over a black-box group which is secure under an active attack model, tolerating any adversary structure Δ satisfying the Q 3 property (in which no union of three subsets from Δ covers the whole player set), which is known to be necessary for achieving security in the active setting. Our protocol uses Maurer’s Verifiable Secret Sharing (VSS) but preserves the essential simplicity of the graph-based approach of Desmedt et al, which avoids each shareholder having to rerun the full VSS protocol after each local computation. A corollary of our result is a new active-secure protocol for general multiparty computation of an arbitrary Boolean circuit.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper we investigate the differential properties of block ciphers in hash function modes of operation. First we show the impact of differential trails for block ciphers on collision attacks for various hash function constructions based on block ciphers. Further, we prove the lower bound for finding a pair that follows some truncated differential in case of a random permutation. Then we present open-key differential distinguishers for some well known round-reduced block ciphers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Espionage, surveillance and clandestine operations by secret agencies and governments were something of an East–West obsession in the second half of the twentieth century, a fact reflected in literature and film. In the twenty-first century, concerns of the Cold War and the threat of Communism have been rearticulated in the wake of 9/11. Under the rubric of ‘terror’ attacks, the discourses of security and surveillance are now framed within an increasingly global context. As this article illustrates, surveillance fiction written for young people engages with the cultural and political tropes that reflect a new social order that is different from the Cold War era, with its emphasis on spies, counter espionage, brainwashing and psychological warfare. While these tropes are still evident in much recent literature, advances in technology have transformed the means of tracking, profiling and accumulating data on individuals’ daily activities. Little Brother, The Hunger Games and Article 5 reflect the complex relationship between the real and the imaginary in the world of surveillance and, as this paper discusses, raise moral and ethical issues that are important questions for young people in our age of security.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this article, we study the security of the IDEA block cipher when it is used in various simple-length or double-length hashing modes. Even though this cipher is still considered as secure, we show that one should avoid its use as internal primitive for block cipher based hashing. In particular, we are able to generate instantaneously free-start collisions for most modes, and even semi-free-start collisions, pseudo-preimages or hash collisions in practical complexity. This work shows a practical example of the gap that exists between secret-key and known or chosen-key security for block ciphers. Moreover, we also settle the 20-year-old standing open question concerning the security of the Abreast-DM and Tandem-DM double-length compression functions, originally invented to be instantiated with IDEA. Our attacks have been verified experimentally and work even for strengthened versions of IDEA with any number of rounds.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The increasing growth in the use of Hardware Security Modules (HSMs) towards identification and authentication of a security endpoint have raised numerous privacy and security concerns. HSMs have the ability to tie a system or an object, along with its users to the physical world. However, this enables tracking of the user and/or an object associated with the HSM. Current systems do not adequately address the privacy needs and as such are susceptible to various attacks. In this work, we analyse various security and privacy concerns that arise when deploying such hardware security modules and propose a system that allow users to create pseudonyms from a trusted master public-secret key pair. The proposed system is based on the intractability of factoring and finding square roots of a quadratic residue modulo a composite number, where the composite number is a product of two large primes. Along with the standard notion of protecting privacy of an user, the proposed system offers colligation between seemingly independent pseudonyms. This new property when combined with HSMs that store the master secret key is extremely beneficial to a user, as it offers a convenient way to generate a large number of pseudonyms using relatively small storage requirements.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recently a convex hull based human identification protocol was proposed by Sobrado and Birget, whose steps can be performed by humans without additional aid. The main part of the protocol involves the user mentally forming a convex hull of secret icons in a set of graphical icons and then clicking randomly within this convex hull. In this paper we show two efficient probabilistic attacks on this protocol which reveal the user’s secret after the observation of only a handful of authentication sessions. We show that while the first attack can be mitigated through appropriately chosen values of system parameters, the second attack succeeds with a non-negligible probability even with large system parameter values which cross the threshold of usability.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We analyse the security of the cryptographic hash function LAKE-256 proposed at FSE 2008 by Aumasson, Meier and Phan. By exploiting non-injectivity of some of the building primitives of LAKE, we show three different collision and near-collision attacks on the compression function. The first attack uses differences in the chaining values and the block counter and finds collisions with complexity 233. The second attack utilizes differences in the chaining values and salt and yields collisions with complexity 242. The final attack uses differences only in the chaining values to yield near-collisions with complexity 299. All our attacks are independent of the number of rounds in the compression function. We illustrate the first two attacks by showing examples of collisions and near-collisions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Current military conflicts are characterized by the use of the improvised explosive device. Improvements in personal protection, medical care, and evacuation logistics have resulted in increasing numbers of casualties surviving with complex musculoskeletal injuries, often leading to lifelong disability. Thus, there exists an urgent requirement to investigate the mechanism of extremity injury caused by these devices in order to develop mitigation strategies. In addition, the wounds of war are no longer restricted to the battlefield; similar injuries can be witnessed in civilian centers following a terrorist attack. Key to understanding such mechanisms of injury is the ability to deconstruct the complexities of an explosive event into a controlled, laboratory-based environment. In this article, a traumatic injury simulator, designed to recreate in the laboratory the impulse that is transferred to the lower extremity from an anti-vehicle explosion, is presented and characterized experimentally and numerically. Tests with instrumented cadaveric limbs were then conducted to assess the simulator’s ability to interact with the human in two mounting conditions, simulating typical seated and standing vehicle passengers. This experimental device will now allow us to (a) gain comprehensive understanding of the load-transfer mechanisms through the lower limb, (b) characterize the dissipating capacity of mitigation technologies, and (c) assess the bio-fidelity of surrogates.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Trivium is a stream cipher candidate of the eStream project. It has successfully moved into phase three of the selection process under the hardware category. No attacks faster than the exhaustive search have so far been reported on Trivium. Bivium-A and Bivium-B are simplified versions of Trivium that are built on the same design principles but with two registers. The simplified design is useful in investigating Trivium type ciphers with a reduced complexity and provides insight into effective attacks which could be extended to Trivium. This paper focuses on an algebraic analysis which uses the boolean satisfiability problem in propositional logic. For reduced variants of the cipher, this analysis recovers the internal state with a minimal amount of keystream observations.