872 resultados para Systems information
Resumo:
Supervisory systems evolution makes the obtaining of significant information from processes more important in the way that the supervision systems' particular tasks are simplified. So, having signal treatment tools capable of obtaining elaborate information from the process data is important. In this paper, a tool that obtains qualitative data about the trends and oscillation of signals is presented. An application of this tool is presented as well. In this case, the tool, implemented in a computer-aided control systems design (CACSD) environment, is used in order to give to an expert system for fault detection in a laboratory plant
Resumo:
Process supervision is the activity focused on monitoring the process operation in order to deduce conditions to maintain the normality including when faults are present Depending on the number/distribution/heterogeneity of variables, behaviour situations, sub-processes, etc. from processes, human operators and engineers do not easily manipulate the information. This leads to the necessity of automation of supervision activities. Nevertheless, the difficulty to deal with the information complicates the design and development of software applications. We present an approach called "integrated supervision systems". It proposes multiple supervisors coordination to supervise multiple sub-processes whose interactions permit one to supervise the global process
Resumo:
This paper proposes to promote autonomy in digital ecosystems so that it provides agents with information to improve the behavior of the digital ecosystem in terms of stability. This work proposes that, in digital ecosystems, autonomous agents can provide fundamental services and information. The final goal is to run the ecosystem, generate novel conditions and let agents exploit them. A set of evaluation measures must be defined as well. We want to provide an outline of some global indicators, such as heterogeneity and diversity, and establish relationships between agent behavior and these global indicators to fully understand interactions between agents, and to understand the dependence and autonomy relations that emerge between the interacting agents. Individual variations, interaction dependencies, and environmental factors are determinants of autonomy that would be considered. The paper concludes with a discussion of situations when autonomy is a milestone
Resumo:
Knowledge on the patterns of repetition amongst individuals who develop language deficits in association with right hemisphere lesions (crossed aphasia) is very limited. Available data indicate that repetition in some crossed aphasics experiencing phonological processing deficits is not heavily influenced by lexical-semantic variables (lexicality, imageability, and frequency) as is regularly reported in phonologically-impaired cases with left hemisphere damage. Moreover, in view of the fact that crossed aphasia is rare, information on the role of right cortical areas and white matter tracts underpinning language repetition deficits is scarce. In this study, repetition performance was assessed in two patients with crossed conduction aphasia and striatal/capsular vascular lesions encompassing the right arcuate fasciculus (AF) and inferior frontal-occipital fasciculus (IFOF), the temporal stem and the white matter underneath the supramarginal gyrus. Both patients showed lexicality effects repeating better words than non-words, but manipulation of other lexical-semantic variables exerted less influence on repetition performance. Imageability and frequency effects, production of meaning-based paraphrases during sentence repetition, or better performance on repeating novel sentences than overlearned clichés were hardly ever observed in these two patients. In one patient, diffusion tensor imaging disclosed damage to the right long direct segment of the AF and IFOF with relative sparing of the anterior indirect and posterior segments of the AF, together with fully developed left perisylvian white matter pathways. These findings suggest that striatal/capsular lesions extending into the right AF and IFOF in some individuals with right hemisphere language dominance are associated with atypical repetition patterns which might reflect reduced interactions between phonological and lexical-semantic processes.
Resumo:
Colorectal cancer is a heterogeneous disease that manifests through diverse clinical scenarios. During many years, our knowledge about the variability of colorectal tumors was limited to the histopathological analysis from which generic classifications associated with different clinical expectations are derived. However, currently we are beginning to understand that under the intense pathological and clinical variability of these tumors there underlies strong genetic and biological heterogeneity. Thus, with the increasing available information of inter-tumor and intra-tumor heterogeneity, the classical pathological approach is being displaced in favor of novel molecular classifications. In the present article, we summarize the most relevant proposals of molecular classifications obtained from the analysis of colorectal tumors using powerful high throughput techniques and devices. We also discuss the role that cancer systems biology may play in the integration and interpretation of the high amount of data generated and the challenges to be addressed in the future development of precision oncology. In addition, we review the current state of implementation of these novel tools in the pathological laboratory and in clinical practice.
Resumo:
[Table des matières] 1. Introduction. 2. Structure (introduction, hiérarchie). 3. Processus (généralités, flux de clientèle, flux d'activité, flux de ressources, aspects temporels, aspects comptables). 4. Descripteurs (qualification, quantification). 5. Indicateurs (définitions, productivité, pertinence, adéquation, efficacité, effectivité, efficience, standards). 6. Bibliographie.
Resumo:
Emotions are crucial for user's decision making in recommendation processes. We first introduce ambient recommender systems, which arise from the analysis of new trends on the exploitation of the emotional context in the next generation of recommender systems. We then explain some results of these new trends in real-world applications through the smart prediction assistant (SPA) platform in an intelligent learning guide with more than three million users. While most approaches to recommending have focused on algorithm performance. SPA makes recommendations to users on the basis of emotional information acquired in an incremental way. This article provides a cross-disciplinary perspective to achieve this goal in such recommender systems through a SPA platform. The methodology applied in SPA is the result of a bunch of technology transfer projects for large real-world rccommender systems
Resumo:
Reliable information is a crucial factor influencing decision-making and, thus, fitness in all animals. A common source of information comes from inadvertent cues produced by the behavior of conspecifics. Here we use a system of experimental evolution with robots foraging in an arena containing a food source to study how communication strategies can evolve to regulate information provided by such cues. The robots could produce information by emitting blue light, which the other robots could perceive with their cameras. Over the first few generations, the robots quickly evolved to successfully locate the food, while emitting light randomly. This behavior resulted in a high intensity of light near food, which provided social information allowing other robots to more rapidly find the food. Because robots were competing for food, they were quickly selected to conceal this information. However, they never completely ceased to produce information. Detailed analyses revealed that this somewhat surprising result was due to the strength of selection on suppressing information declining concomitantly with the reduction in information content. Accordingly, a stable equilibrium with low information and considerable variation in communicative behaviors was attained by mutation selection. Because a similar coevolutionary process should be common in natural systems, this may explain why communicative strategies are so variable in many animal species.
Resumo:
Critical real-time ebedded (CRTE) Systems require safe and tight worst-case execution time (WCET) estimations to provide required safety levels and keep costs low. However, CRTE Systems require increasing performance to satisfy performance needs of existing and new features. Such performance can be only achieved by means of more agressive hardware architectures, which are much harder to analyze from a WCET perspective. The main features considered include cache memòries and multi-core processors.Thus, althoug such features provide higher performance, corrent WCET analysis methods are unable to provide tight WCET estimations. In fact, WCET estimations become worse than for simple rand less powerful hardware. The main reason is the fact that hardware behavior is deterministic but unknown and, therefore, the worst-case behavior must be assumed most of the time, leading to large WCET estimations. The purpose of this project is developing new hardware designs together with WCET analysis tools able to provide tight and safe WCET estimations. In order to do so, those pieces of hardware whose behavior is not easily analyzable due to lack of accurate information during WCET analysis will be enhanced to produce a probabilistically analyzable behavior. Thus, even if the worst-case behavior cannot be removed, its probabilty can be bounded, and hence, a safe and tight WCET can be provided for a particular safety level in line with the safety levels of the remaining components of the system. During the first year the project we have developed molt of the evaluation infraestructure as well as the techniques hardware techniques to analyze cache memories. During the second year those techniques have been evaluated, and new purely-softwar techniques have been developed.
Resumo:
Background: To enhance our understanding of complex biological systems like diseases we need to put all of the available data into context and use this to detect relations, pattern and rules which allow predictive hypotheses to be defined. Life science has become a data rich science with information about the behaviour of millions of entities like genes, chemical compounds, diseases, cell types and organs, which are organised in many different databases and/or spread throughout the literature. Existing knowledge such as genotype - phenotype relations or signal transduction pathways must be semantically integrated and dynamically organised into structured networks that are connected with clinical and experimental data. Different approaches to this challenge exist but so far none has proven entirely satisfactory. Results: To address this challenge we previously developed a generic knowledge management framework, BioXM™, which allows the dynamic, graphic generation of domain specific knowledge representation models based on specific objects and their relations supporting annotations and ontologies. Here we demonstrate the utility of BioXM for knowledge management in systems biology as part of the EU FP6 BioBridge project on translational approaches to chronic diseases. From clinical and experimental data, text-mining results and public databases we generate a chronic obstructive pulmonary disease (COPD) knowledge base and demonstrate its use by mining specific molecular networks together with integrated clinical and experimental data. Conclusions: We generate the first semantically integrated COPD specific public knowledge base and find that for the integration of clinical and experimental data with pre-existing knowledge the configuration based set-up enabled by BioXM reduced implementation time and effort for the knowledge base compared to similar systems implemented as classical software development projects. The knowledgebase enables the retrieval of sub-networks including protein-protein interaction, pathway, gene - disease and gene - compound data which are used for subsequent data analysis, modelling and simulation. Pre-structured queries and reports enhance usability; establishing their use in everyday clinical settings requires further simplification with a browser based interface which is currently under development.
Resumo:
It is well known that multiple-input multiple-output (MIMO) techniques can bring numerous benefits, such as higher spectral efficiency, to point-to-point wireless links. More recently, there has been interest in extending MIMO concepts tomultiuser wireless systems. Our focus in this paper is on network MIMO, a family of techniques whereby each end user in a wireless access network is served through several access points within its range of influence. By tightly coordinating the transmission and reception of signals at multiple access points, network MIMO can transcend the limits on spectral efficiency imposed by cochannel interference. Taking prior information-theoretic analyses of networkMIMO to the next level, we quantify the spectral efficiency gains obtainable under realistic propagation and operational conditions in a typical indoor deployment. Our study relies on detailed simulations and, for specificity, is conducted largely within the physical-layer framework of the IEEE 802.16e Mobile WiMAX system. Furthermore,to facilitate the coordination between access points, we assume that a high-capacity local area network, such as Gigabit Ethernet,connects all the access points. Our results confirm that network MIMO stands to provide a multiple-fold increase in spectralefficiency under these conditions.
Resumo:
In this paper, we introduce a pilot-aided multipath channel estimator for Multiple-Input Multiple-Output (MIMO) Orthogonal Frequency Division Multiplexing (OFDM) systems. Typical estimation algorithms assume the number of multipath components and delays to be known and constant, while theiramplitudes may vary in time. In this work, we focus on the more realistic assumption that also the number of channel taps is unknown and time-varying. The estimation problem arising from this assumption is solved using Random Set Theory (RST), which is a probability theory of finite sets. Due to the lack of a closed form of the optimal filter, a Rao-Blackwellized Particle Filter (RBPF) implementation of the channel estimator is derived. Simulation results demonstrate the estimator effectiveness.
Resumo:
The purpose of this paper is to examine (1) some of the models commonly used to represent fading,and (2) the information-theoretic metrics most commonly used to evaluate performance over those models. We raise the question of whether these models and metrics remain adequate in light of the advances that wireless systems haveundergone over the last two decades. Weaknesses are pointedout, and ideas on possible fixes are put forth.
Resumo:
Abstract Sitting between your past and your future doesn't mean you are in the present. Dakota Skye Complex systems science is an interdisciplinary field grouping under the same umbrella dynamical phenomena from social, natural or mathematical sciences. The emergence of a higher order organization or behavior, transcending that expected of the linear addition of the parts, is a key factor shared by all these systems. Most complex systems can be modeled as networks that represent the interactions amongst the system's components. In addition to the actual nature of the part's interactions, the intrinsic topological structure of underlying network is believed to play a crucial role in the remarkable emergent behaviors exhibited by the systems. Moreover, the topology is also a key a factor to explain the extraordinary flexibility and resilience to perturbations when applied to transmission and diffusion phenomena. In this work, we study the effect of different network structures on the performance and on the fault tolerance of systems in two different contexts. In the first part, we study cellular automata, which are a simple paradigm for distributed computation. Cellular automata are made of basic Boolean computational units, the cells; relying on simple rules and information from- the surrounding cells to perform a global task. The limited visibility of the cells can be modeled as a network, where interactions amongst cells are governed by an underlying structure, usually a regular one. In order to increase the performance of cellular automata, we chose to change its topology. We applied computational principles inspired by Darwinian evolution, called evolutionary algorithms, to alter the system's topological structure starting from either a regular or a random one. The outcome is remarkable, as the resulting topologies find themselves sharing properties of both regular and random network, and display similitudes Watts-Strogtz's small-world network found in social systems. Moreover, the performance and tolerance to probabilistic faults of our small-world like cellular automata surpasses that of regular ones. In the second part, we use the context of biological genetic regulatory networks and, in particular, Kauffman's random Boolean networks model. In some ways, this model is close to cellular automata, although is not expected to perform any task. Instead, it simulates the time-evolution of genetic regulation within living organisms under strict conditions. The original model, though very attractive by it's simplicity, suffered from important shortcomings unveiled by the recent advances in genetics and biology. We propose to use these new discoveries to improve the original model. Firstly, we have used artificial topologies believed to be closer to that of gene regulatory networks. We have also studied actual biological organisms, and used parts of their genetic regulatory networks in our models. Secondly, we have addressed the improbable full synchronicity of the event taking place on. Boolean networks and proposed a more biologically plausible cascading scheme. Finally, we tackled the actual Boolean functions of the model, i.e. the specifics of how genes activate according to the activity of upstream genes, and presented a new update function that takes into account the actual promoting and repressing effects of one gene on another. Our improved models demonstrate the expected, biologically sound, behavior of previous GRN model, yet with superior resistance to perturbations. We believe they are one step closer to the biological reality.