927 resultados para Sympathetic ganglia
Resumo:
Aim: To characterize, compare and classify the performance of students with attention deficit-hyperactivity disorder (ADHD) according to the semiology of errors and to describe the neuroimaging findings in these students. Methods: We evaluated 36 primary school boys and girls aged between 8 and 11 years old in the 3 rd to 5 th grades. The children were divided in two groups. Group I consisted of 18 students with an interdisciplinary diagnosis of ADHD (60% boys and 40% girls). Group II consisted of 18 children with good academic performance, paired by gender, age and grade with children in group I. The collective and individual versions of the Pro-ortografia spelling tests were applied. Results: Statistically significant differences were found in almost all the tests of the individual and collective versions of the spelling evaluation, with children with ADHD showing a higher average number of errors. Neuroimaging examinations indicated that 81% of the students in GI showed hypoperfusion in the frontal lobe, 7% had hypoperfusion of the thalamus and basal ganglia, 6% showed hypoperfusion in the basal ganglia only and 6% showed hypoperfusion in the left and right frontal lobes. Conclusions: Children with ADHD demonstrated poorer knowledge of the use of spelling rules in Brazilian Portuguese, which could be related to changes in blood flow in the frontal lobe, parietal lobe, thalamus and basal ganglia. These changes could cause a lack of attention, affecting phonological working memory and the planning of writing. © 2011 AELFA.
Resumo:
In this paper, we present the rare case of a patient with cervical lymphadenopathy diagnosed as a T-cell-rich B-cell non-Hodgkin lymphoma that manifested Horner's syndrome due to a post-ganglionic sympathetic neuron lesion caused by the tumor. Copyright © 2012 S. Karger AG, Basel.
Resumo:
Aldosterone acting on the brain stimulates sodium appetite and sympathetic activity by mechanisms that are still not completely clear. In the present study, we investigated the effects of chronic infusion of aldosterone and acute injection of the mineralocorticoid receptor (MR) antagonist RU 28318 into the fourth ventricle (4th V) on sodium appetite. Male Wistar rats (280-350 g) with a stainless-steel cannula in either the 4th V or lateral ventricle (LV) were used. Daily intake of 0.3 M NaCl increased to 46 ± 15 and 130 ± 6 ml/24 h after 6 days of infusion of 10 and 100 ng/h of aldosterone into the 4th V (intake with vehicle infusion: 2 ± 1 ml/24 h). Water intake fell slightly and not consistently, and food intake was not affected by aldosterone. Sodium appetite induced by diuretic (furosemide) combined with 24 h of a low-sodium diet fell from 12 ± 1.7 ml/2 h to 5.6 ± 0.8 ml/2 h after injection of the MR antagonist RU 28318 (100 ng/2 μl) into the 4th V. RU 28318 also reduced the intake of 0.3 M NaCl induced by 9 days of a low-sodium diet from 9.5 ± 2.6 ml/2 h to 1.2 ± 0.6 ml/2 h. Infusion of 100 or 500 ng/h of aldosterone into the LV did not affect daily intake of 0.3 M NaCl. The results are functional evidence that aldosterone acting on MR in the hindbrain activates a powerful mechanism involved in the control of sodium appetite. © 2013 the American Physiological Society.
Resumo:
Background: The literature has already demonstrated that cigarette influences the cardiovascular system. In this study, we performed a literature review in order to investigate the relationship between sidestream cigarette smoke (SSCS) and cardiac autonomic regulation. Methods. Searches were performed on Medline, SciELO, Lilacs and Cochrane databases using the crossing between the key-words: cigarette smoking, autonomic nervous system, air pollution and heart rate variability. Results: The selected studies indicated that SSCS exposure affects the sympathetic and parasympathetic responses to changes in arterial blood pressure. Moreover, heart rate responses to environmental tobacco smoke are increased in smokers compared to non-smokers. The mechanism involved on this process suggest increased oxidative stress in brainstem areas that regulate the cardiovascular system. Conclusion: Further studies are necessary to add new elements in the literature to improve new therapies to treat cardiovascular disorders in subjects exposed to sidestream cigarette smoke. © 2013 Valenti et al; licensee BioMed Central Ltd.
Resumo:
Since little information is available regarding cellular antigen mapping and the involvement of non-neuronal cells in the pathogenesis of bovine herpesvirus type 5 (BHV-5) infection, it were determined the BHV-5 distribution, the astrocytic reactivity, the involvement of lymphocytes and the presence of matrix metalloproteinase (MMP)-9 in the brain of rabbits experimentally infected with BHV-5. Twelve New Zealand rabbits that were seronegative for BHV-5 were used for virus inoculation, and five rabbits were used as mock-infected controls. The rabbits were kept in separate areas and were inoculated intranasally with 500 μl of virus suspension (EVI 88 Brazilian isolate) into each nostril (virus titer, 107.5 TCID50). Control rabbits were inoculated with the same volume of minimum essential medium. Five days before virus inoculation, the rabbits were submitted to daily administration of dexamethasone. After virus inoculation, the rabbits were monitored clinically on a daily basis. Seven rabbits showed respiratory symptoms and four animals exhibited neurological symptoms. Tissue sections were collected for histological examination and immunohistochemistry to examine BHV-5 antigens, astrocytes, T and B lymphocytes and MMP-9. By means of immunohistochemical and PCR methods, BHV-5 was detected in the entire brain of the animals which presented with neurological symptoms, especially in the trigeminal ganglion and cerebral cortices. Furthermore, BHV-5 antigens were detected in neurons and/or other non-neural cells. In addition to the neurons, most infiltrating CD3 T lymphocytes observed in these areas were positive for MMP-9 and also for BHV-5 antigen. These infected cells might contribute to the spread of the virus to the rabbit brain along the trigeminal ganglia and olfactory nerve pathways. © 2013 Elsevier Ltd.
Resumo:
Model of the study: Controlled clinical trial. Objective: To verify the effects of 16 weeks of combined aerobic and resistance training on cardiac autonomic modulation in menopausal women. Methods: 17 menopausal women were divided into two groups: the training group (TG: n=11) and control group (CG: n=6). The body composition variables were estimated using dual-energy X-ray absorptiometry. The cardiac autonomic modulation was evaluated by heart rate variability using linear indexes. The training protocol consisted of 16 weeks of 50 minutes of resistance training and 30 minutes of aerobic training. Results: For the TG there was an increase in the rMSSD(ms) index (pre:17,4±3,7 and post:24,8±13,1, p<0,045), an increase in the duration of the intervals between the cardiac beats(ms) (pre:891,2±80,2 and post:974,1±71,4, p<0,003) and in the values of heart rate(bpm) (pre:68,1±6,4 and post:62,0±4,7, p<0,003), additionally for the spectral indexes in normalized units, changes for LF (pre:52,2±13,1 and post:44,5±12,4, p<0,025) and HF (pre:47,8±13,3 and post:55,5±12,4, p<0,025) were noticed, demonstrating increased parasympathetic and reduced sympathetic. There were no significant differences to CG. Conclusion: combined aerobic and resistance training promoted benefits to the autonomic modulation in menopausal women.
Resumo:
The literature has already demonstrated that auditory stimulation with music influences the cardiovascular system. In this study, we performed a literature review in order to investigate the relationship between auditory mechanisms and cardiac autonomic regulation. The selected studies indicated that there is a strong correlation between noise intensity and vagal-sympathetic balance. Also, it was reported that music therapy improved heart rate variability in anthracycline-treated breast cancer patients. It was hypothesized that dopamine release in the striatal system induced by pleasure songs are involved in the cardiac autonomic regulation. Further studies are necessary to add new elements in the literature to improve new therapies to treat cardiovascular disorders.
Resumo:
The goal of the present study was to determine if nitric oxide (NO) acting on the brain of bullfrog (Lithobates catesbeianus) is involved in arterial pressure and heart rate (HR) control by influencing sympathetic activity. We investigated the effect of intracerebroventricular injections of l-NMMA (a nonselective NO synthase inhibitor) on mean arterial blood pressure (MAP), HR and cutaneous vascular conductance (CVC) of pelvic skin after intravenous injection of α or β adrenergic blockers, prazosin or sotalol, respectively. Arterial pressure was directly measured by a telemetry sensor inserted in the aortic arch of animals. l-NMMA increased MAP, but did not change HR. This hypertensive response was inhibited by the pre-treatment with prazosin, but accentuated by sotalol. The effect of l-NMMA on MAP was also inhibited by i.v. injections of the ganglionic blocker, hexamethonium. Thus, NO acting on the brain of bullfrog seems to present a hypotensive effect influencing the sympathetic activity dependent on α and β adrenergic receptors in the periphery. © 2013 Elsevier Inc.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Ethanol (ETOH) consumption has been associated with endocrine and autonomic changes, including the development of hypertension. However, the sequence of pathophysiological events underlying the emergence of this effect is poorly understood. Aims: This study aimed to establish a time-course correlation between neuroendocrine and cardiovascular changes contributing to the development of hypertension following ETOH consumption. Methods: Male adult Wistar rats were subjected to the intake of increasing ETOH concentrations in their drinking water (first week: 5%, second week: 10%, third and fourth weeks: 20% v/v). Results: ETOH consumption decreased plasma and urinary volumes, as well as body weight and fluid intake. Furthermore, plasma osmolality, plasma sodium and urinary osmolality were elevated in the ETOH-treated rats. ETOH intake also induced a progressive increase in the mean arterial pressure (MAP), without affecting heart rate. Initially, this increasein MAP was correlated with increased plasma concentrations of adrenaline and noradrenaline. After the second week of ETOH treatment, plasma catecholamines returned to basal levels, and incremental increases were observed in plasma concentrations of vasopressin (AVP) and angiotensin II (ANG II). Conversely, plasma oxytocin, atrial natriuretic peptide, prolactin and the hypothalamus-pituitary-adrenal axis components were not significantly altered by ETOH. Conclusions: Taken together, these results suggest that increased sympathetic activity may contribute to the early increase in MAP observed inETOHtreated rats. However, the maintenance of this effect may be predominantly regulated by the long-term increase in the secretion of other circulating factors, such as AVP and ANG II, the secretion of both hormones being stimulated by the ETOH-induced dehydration. © The Author 2013. Medical Council on Alcohol and Oxford University Press. All rights reserved.
Resumo:
The literature investigated the effects of chronic baroque music auditory stimulation on the cardiovascular system. However, it lacks in the literature the acute effects of different styles of music on cardiac autonomic regulation. To evaluate the acute effects of baroque and heavy metal music on heart rate variability (HRV) in women. The study was performed in 21 healthy women between 18 and 30 years old. We excluded persons with previous experience with music instrument and those who had affinity with the song styles. All procedures were performed in the same sound-proof room. We analyzed HRV in the time (standard deviation of normal-to-normal respiratory rate (RR) intervals, root-mean square of differences between adjacent normal RR intervals in a time interval, and the percentage of adjacent RR intervals with a difference of duration greater than 50 ms) and frequency (low frequency [LF], high frequency [HF], and LF/HF ratio) domains. HRV was recorded at rest for 10 min. Subsequently they were exposed to baroque or heavy metal music for 5 min through an earphone. After the first music exposure they remained at rest for more 5 min and them they were exposed again to baroque or heavy metal music. The sequence of songs was randomized for each individual. The power analysis provided a minimal number of 18 subjects. Shapiro-Wilk to verify normality of data and analysis of variance for repeated measures followed by the Bonferroni test for parametric variables and Friedman's followed by the Dunn's post-test for non-parametric distributions. During the analysis of the time-domain indices were not changed. In the frequency-domain analysis, the LF in absolute units was reduced during the heavy metal music stimulation compared to control. Acute exposure to heavy metal music affected the sympathetic activity in healthy women.
Resumo:
Aim: Chronic exposure to intermittent hypoxia commonly induces the activation of sympathetic tonus and the disruption of glucose homoeostasis. However, the effects of exposure to acute intermittent hypoxia (AIH) on glucose homoeostasis are not yet fully elucidated. Herein, we evaluated parameters related to glucose metabolism in rats exposed to AIH. Methods: Male adult rats were submitted to 10 episodes of hypoxia (6% O2, for 45 s) interspersed with 5-min intervals of normoxia (21%), while the control (CTL) group was kept in normoxia. Results: Acute intermittent hypoxia rats presented higher fasting glycaemia, normal insulinaemia, increased lactataemia and similar serum lipid levels, compared to controls (n = 10, P < 0.05). Additionally, AIH rats exhibited increased glucose tolerance (GT) (n = 10, P < 0.05) and augmented insulin sensitivity (IS) (n = 10, P < 0.05). The p-Akt/Akt protein ratio was increased in the muscle, but not in the liver and adipose tissue of AIH rats (n = 6, P < 0.05). The elevated glycaemia in AIH rats was associated with a reduction in the hepatic glycogen content (n = 10, P < 0.05). Moreover, the AIH-induced increase in blood glucose concentration, as well as reduced hepatic glycogen content, was prevented by prior systemic administration of the β-adrenergic antagonist (P < 0.05). The effects of AIH on glycaemia and Akt phosphorylation were transient and not observed after 60 min. Conclusions: We suggest that AIH induces an increase in blood glucose concentration as a result of hepatic glycogenolysis recruitment through sympathetic activation. The augmentation of GT and IS might be attributed, at least in part, to increased β-adrenergic sympathetic stimulation and Akt protein activation in skeletal muscles, leading to a higher glucose availability and utilization. © 2013 Scandinavian Physiological Society.
Resumo:
The rostral ventrolateral medulla (RVLM) contains the presympathetic neurons involved in cardiovascular regulation that has been implicated as one of the most important central sites for the antihypertensive action of moxonidine (an α2-adrenergic and imidazoline agonist). Here, we sought to evaluate the cardiovascular effects produced by moxonidine injected into another important brainstem site, the commissural nucleus of the solitary tract (commNTS). Mean arterial pressure (MAP), heart rate (HR), splanchnic sympathetic nerve activity (sSNA) and activity of putative sympathoexcitatory vasomotor neurons of the RVLM were recorded in conscious or urethane-anesthetized, and artificial ventilated male Wistar rats. In conscious or anesthetized rats, moxonidine (2.5 and 5. nmol/50. nl) injected into the commNTS reduced MAP, HR and sSNA. The injection of moxonidine into the commNTS also elicited a reduction of 28% in the activity of sympathoexcitatory vasomotor neurons of the RVLM. To further assess the notion that moxonidine could act in another brainstem area to elicit the antihypertensive effects, a group with electrolytic lesions of the commNTS or sham and with stainless steel guide-cannulas implanted into the 4th V were used. In the sham group, moxonidine (20. nmol/1. μl) injected into 4th V decreased MAP and HR. The hypotension but not the bradycardia produced by moxonidine into the 4th V was reduced in acute (1. day) commNTS-lesioned rats. These data suggest that moxonidine can certainly act in other brainstem regions, such as commNTS to produce its beneficial therapeutic effects, such as hypotension and reduction in sympathetic nerve activity. © 2013 IBRO.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)