988 resultados para Sun: magnetic fields
Resumo:
The Ulysses spacecraft has shown that the radial component of the heliospheric magnetic field is approximately independent of latitude. This has allowed quantification of the total open solar flux from near-Earth observations of the interplanetary magnetic field. The open flux can also be estimated from photospheric magnetograms by mapping the fields up to the coronal source surface where the field is assumed to be radial and which is usually assumed to be at a heliocentric distance r = 2.5R_{S} (a mean solar radius, 1R_{S} = 6.96x10^{8} m). These two classes of open flux estimate will differ by the open flux that threads the heliospheric current sheet(s) inside Earths orbit at 2.5R_{S} < r < 1R{1} (where the mean Earth-Sun distance, 1R_{1} = 1 AU = 1.5 x 10^{11} m). We here use near-Earth measurements to estimate this flux and show that at sunspot minimum it causes only a very small (approximately 0.5%) systematic difference between the two types of open flux estimate, with an uncertainty that is of order 24% in hourly values, 16% in monthly averages, and between -6% and +2% in annual values. These fractions may be somewhat larger for sunspot maximum because of flux emerging at higher heliographic latitudes.
Resumo:
The Sun-Earth connection is studied using long-term measurements from the Sun and from the Earth. The auroral activity is shown to correlate to high accuracy with the smoothed sunspot numbers. Similarly, both geomagnetic activity and global surface temperature anomaly can be linked to cyclic changes in the solar activity. The interlinked variations in the solar magnetic activity and in the solar irradiance cause effects that can be observed both in the Earth's biosphere and in the electromagnetic environment. The long-term data sets suggest that the increase in geomagnetic activity and surface temperatures are related (at least partially) to longer-term solar variations, which probably include an increasing trend superposed with a cyclic behavior with a period of about 90 years.
Resumo:
Stellar astronomy tells us much about the long-term evolution of our Sun while forensic evidence (for example, cosmic-ray products in ice cores) gives us indications of its fluctuations over the last millennium. However, such studies do not give us a sufficiently detailed understanding of solar change over the last century to allow us to detect and quantify any role that the Sun might have played in the observed rise in average surface temperatures on Earth. This paper describes recent research that has filled this gap by applying advances in our understanding of the effects and structure of the solar wind to historical data on the Earth's magnetic field.
Resumo:
We analyze ionospheric convection patterns over the polar regions during the passage of an interplanetary magnetic cloud on January 14, 1988, when the interplanetary magnetic field (IMF) rotated slowly in direction and had a large amplitude. Using the assimilative mapping of ionospheric electrodynamics (AMIE) procedure, we combine simultaneous observations of ionospheric drifts and magnetic perturbations from many different instruments into consistent patterns of high-latitude electrodynamics, focusing on the period of northward IMF. By combining satellite data with ground-based observations, we have generated one of the most comprehensive data sets yet assembled and used it to produce convection maps for both hemispheres. We present evidence that a lobe convection cell was embedded within normal merging convection during a period when the IMF By and Bz components were large and positive. As the IMF became predominantly northward, a strong reversed convection pattern (afternoon-to-morning potential drop of around 100 kV) appeared in the southern (summer) polar cap, while convection in the northern (winter) hemisphere became weak and disordered with a dawn-to-dusk potential drop of the order of 30 kV. These patterns persisted for about 3 hours, until the IMF rotated significantly toward the west. We interpret this behavior in terms of a recently proposed merging model for northward IMF under solstice conditions, for which lobe field lines from the hemisphere tilted toward the Sun (summer hemisphere) drape over the dayside magnetosphere, producing reverse convection in the summer hemisphere and impeding direct contact between the solar wind and field lines connected to the winter polar cap. The positive IMF Bx component present at this time could have contributed to the observed hemispheric asymmetry. Reverse convection in the summer hemisphere broke down rapidly after the ratio |By/Bz| exceeded unity, while convection in the winter hemisphere strengthened. A dominant dawn-to-dusk potential drop was established in both hemispheres when the magnitude of By exceeded that of Bz, with potential drops of the order of 100 kV, even while Bz remained northward. The later transition to southward Bz produced a gradual intensification of the convection, but a greater qualitative change occurred at the transition through |By/Bz| = 1 than at the transition through Bz = 0. The various convection patterns we derive under northward IMF conditions illustrate all possibilities previously discussed in the literature: nearly single-cell and multicell, distorted and symmetric, ordered and unordered, and sunward and antisunward.
Resumo:
The asymmetries in the convective flows, current systems, and particle precipitation in the high-latitude dayside ionosphere which are related to the equatorial plane components of the interplanetary magnetic field (IMF) are discussed in relation to the results of several recent observational studies. It is argued that all of the effects reported to date which are ascribed to the y component of the IMF can be understood, at least qualitatively, in terms of a simple theoretical picture in which the effects result from the stresses exerted on the magnetosphere consequent on the interconnection of terrestrial and interplanetary fields. In particular, relaxation under the action of these stresses allows, in effect, a partial penetration of the IMF into the magnetospheric cavity, such that the sense of the expected asymmetry effects on closed field lines can be understood, to zeroth order, in terms of the dipole plus uniform field model. In particular, in response to IMF By, the dayside cusp should be displaced in longitude about noon in the same sense as By in the northern hemisphere, and in the opposite sense to By in the southern hemisphere, while simultaneously the auroral oval as a whole should be shifted in the dawn-dusk direction in the opposite sense with respect to By. These expected displacements are found to be consistent with recently published observations. Similar considerations lead to the suggestion that the auroral oval may also undergo displacements in the noon-midnight direction which are associated with the x component of the IMF. We show that a previously published study of the position of the auroral oval contains strong initial evidence for the existence of this effect. However, recent results on variations in the latitude of the cusp are more ambiguous. This topic therefore requires further study before definitive conclusions can be drawn.
Resumo:
In the auroral zone, ionospheric plasma often moves horizontally at more than 1 km s1, driven by magnetospheric electric fields, but it has usually been assumed that vertical velocities are much smaller. On occasions, however, plasma has been seen to move upwards along the magnetic field line at several hundred m s1. These upward velocities are associated with electric fields strong enough to heat the ion population and drive it into a non-thermal state1,2. Here we report observations of substantial upwards acceleration of plasma, to velocities as high as 500 m s1. An initial upthrust was provided by a combined upwelling of the neutral atmosphere and ionosphere but the continued acceleration at greater heights is explained by a combination of enhanced plasma pressure and the 'hydrodynamic mirror force'3. This acceleration marks an important stage in the transport of plasma from the ionosphere into the magnetosphere.
Resumo:
A Hale cycle, one complete magnetic cycle of the Sun, spans two complete Schwabe cycles (also referred to as sunspot and, more generally, solar cycles). The approximately 22-year Hale cycle is seen in magnetic polarities of both sunspots and polar fields, as well as in the intensity of galactic cosmic rays reaching Earth, with odd- and even-numbered solar cycles displaying qualitatively different waveforms. Correct numbering of solar cycles also underpins empirical cycle-to-cycle relations which are used as first-order tests of stellar dynamo models. There has been much debate about whether the unusually long solar cycle 4 (SC4), spanning- 17841799, was actually two shorter solar cycles combined as a result of poor data coverage in the original Wolf sunspot number record. Indeed, the group sunspot number does show a small increase around 17941799 and there is evidence of an increase in the mean latitude of sunspots at this time, suggesting the existence of a cycle 4b. In this study, we use cosmogenic radionuclide data and associated reconstructions of the heliospheric magnetic field (HMF) to show that the Hale cycle has persisted over the last 300 years and that data prior to 1800 are more consistent with cycle 4 being a single long cycle (the no SC4b scenario). We also investigate the effect of cycle 4b on the HMF using an open solar flux (OSF) continuity model, in which the OSF source term is related to sunspot number and the OSF loss term is determined by the heliospheric current sheet tilt, assumed to be a simple function of solar cycle phase. The results are surprising; Without SC4b, the HMF shows two distinct peaks in the 17841799 interval, while the addition of SC4b removes the secondary peak, as the OSF loss term acts in opposition to the later rise in sunspot number. The timing and magnitude of the main SC4 HMF peak is also significantly changed by the addition of SC4b. These results are compared with the cosmogenic isotope reconstructions of HMF and historical aurora records. These data marginally favour the existence of SC4b (the SC4b scenario), though the result is less certain than that based on the persistence of the Hale cycle. Thus while the current uncertainties in the observations preclude any definitive conclusions, the data favour the no SC4b scenario. Future improvements to cosmogenic isotope reconstructions of the HMF, through either improved modelling or additional ice cores from well-separated geographic locations, may enable questions of the existence of SC4b and the phase of Hale cycle prior to the Maunder minimum to be settled conclusively.
Resumo:
Our numerical simulations show that the reconnection of magnetic field becomes fast in the presence of weak turbulence in the way consistent with the Lazarian and Vishniac (1999) model of fast reconnection. We trace particles within our numerical simulations and show that the particles can be efficiently accelerated via the first order Fermi acceleration. We discuss the acceleration arising from reconnection as a possible origin of the anomalous cosmic rays measured by Voyagers. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Polycrystalline Ni nanowires with different diameters were electrodeposited in nanoporous anodized alumina membranes. First-Order Reversal Curves (FORCs) were measured and FORC distributions were calculated. They clearly showed an asymmetric behavior with a strong maximum at negative interaction fields, evidencing the dominant demagnetizing interactions which depend on the geometry of the nanowires. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
The distributions of coercivities and magnetic interactions in a set of polycrystalline Ni(0.8)Fe(0.2)/FeMn bilayers have been determined using the first-order reversal curve (FORC) formalism. The thickness of the permalloy (Py) film was fixed at 10 nm (nominal), while that of the FeMn film varied within the range 0-20 nm. The FORC diagrams of each bilayer displayed two clearly distinguishable regions. The main region was generated by Py particles whose coercivities were enhanced in comparison with those in which the FeMn film was absent (sample O). The minor region was produced by Py particles with coercivities similar to or slightly higher than those of particles in the Py film of sample O. Each sample presented two distributions of interaction fields, one for each region, and both were centred slightly below the exchange-bias field, thus indicating a prevalence of magnetizing interactions. These results are consistent with a grain size distribution in the Py layer and the presence of uncompensated antiferromagnetic moments.
Resumo:
Using the first-principles real-space linear muffin-tin orbital method within the atomic sphere approximation (RS-LMTO-ASA) we study hyperfine and local magnetic properties of substituted pure Fe and Fe-Cu clusters in an fcc Cu matrix. Spin and orbital contributions to magnetic moments, hyperfine fields and the Mossbauer isomer shifts at the Fe sites in Fe precipitates and Fe-Cu alloy clusters of sizes up to 60 Fe atoms embedded in the Cu matrix are calculated and the influence of the local environment on these properties is discussed.
Resumo:
The evolution of the energy states of the phosphorous donor in silicon with magnetic field has been the subject of previous experimental and theoretical studies to fields of 10 T. We now present experimental optical absorption data to 18 T in combination with theoretical data to the same field. We observe features that are not revealed in the earlier work, including additional interactions and anti-crossings between the different final states. For example, according to the theory, for the ""1s -> 2p (+)"" transition, there are anti-crossings at about 5, 10, 14, 16, and 18 T. In the experiments, we resolve at least the 5, 10, and 14 T anti-crossings, and our data at 16 and 18 T are consistent with the calculations.
Resumo:
Recent studies have demonstrated that sheath dynamics in plasma immersion ion implantation (PIII) is significantly affected by an external magnetic field, especially in the case when the magnetic field is parallel to the workpiece surface or intersects it at small angles. In this work we report the results from two-dimensional, particle-in-cell (PIC) computer simulations of magnetic field enhanced plasma immersion implantation system at different bias voltages. The simulations begin with initial low-density nitrogen plasma, which extends with uniform density through a grounded cylindrical chamber. Negative bias voltage is applied to a cylindrical target located on the axis of the vacuum chamber. An axial magnetic field is created by a solenoid installed inside the target holder. A set of simulations at a fixed magnetic field of 0.0025 T at the target surface is performed. Secondary electron emission from the target subjected to ion bombardment is also included. It is found that the plasma density around the cylindrical target increases because of intense background gas ionization by the electrons drifting in the crossed E x B fields. Suppression of the sheath expansion and increase of the implantation current density in front of the high-density plasma region are observed. The effect of target bias on the sheath dynamics and implantation current of the magnetic field enhanced PIII is discussed. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
The behavior of plasma and sheath characteristics under the action of an applied magnetic field is important in many applications including plasma probes and material processing. Plasma immersion ion implantation (PIII) has been developed as a fast and efficient surface modification technique of complex shaped three-dimensional objects. The PIII process relies on the acceleration of ions across a high-voltage plasma sheath that develops around the target. Recent studies have shown that the sheath dynamics is significantly affected by an external magnetic field. In this work we describe a two-dimensional computer simulation of magnetic field enhanced plasma immersion implantation system. Negative bias voltage is applied to a cylindrical target located on the axis of a grounded cylindrical vacuum chamber filled with uniform nitrogen plasma. An axial magnetic field is created by a solenoid installed inside the cylindrical target. The computer code employs the Monte Carlo method for collision of electrons and neutrals in the plasma and a particle-in-cell (PIC) algorithm for simulating the movement of charged particles in the electromagnetic field. Secondary electron emission from the target subjected to ion bombardment is also included. It is found that a high-density plasma region is formed around the cylindrical target due to the intense background gas ionization by the magnetized electrons drifting in the crossed ExB fields. An increase of implantation current density in front of high density plasma region is observed. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Plasma immersion ion implantation (PIII) with low external magnetic field has been investigated both numerically and experimentally. The static magnetic field considered is essentially nonuniform and is generated by two magnetic coils installed outside the vacuum chamber. Experiments have been conducted to investigate the effect of two of the most important PIII parameters: target voltage and gas pressure. In that context, it was found that the current density increased when the external parameters were varied. Later, the PIII process was analyzed numerically using the 2.5-D computer code KARAT. The numerical results show that the system of crossed E x B fields enhances the PIII process. The simulation showed an increase of the plasma density around the target under the operating and design conditions considered. Consequently, an increase of the ion current density on the target was observed. All these results are explained through the mechanism of gas ionization by collisions with electrons drifting in crossed E x B fields.