976 resultados para Sum of logistics
Resumo:
In the maximum parsimony (MP) and minimum evolution (ME) methods of phylogenetic inference, evolutionary trees are constructed by searching for the topology that shows the minimum number of mutational changes required (M) and the smallest sum of branch lengths (S), respectively, whereas in the maximum likelihood (ML) method the topology showing the highest maximum likelihood (A) of observing a given data set is chosen. However, the theoretical basis of the optimization principle remains unclear. We therefore examined the relationships of M, S, and A for the MP, ME, and ML trees with those for the true tree by using computer simulation. The results show that M and S are generally greater for the true tree than for the MP and ME trees when the number of nucleotides examined (n) is relatively small, whereas A is generally lower for the true tree than for the ML tree. This finding indicates that the optimization principle tends to give incorrect topologies when n is small. To deal with this disturbing property of the optimization principle, we suggest that more attention should be given to testing the statistical reliability of an estimated tree rather than to finding the optimal tree with excessive efforts. When a reliability test is conducted, simplified MP, ME, and ML algorithms such as the neighbor-joining method generally give conclusions about phylogenetic inference very similar to those obtained by the more extensive tree search algorithms.
Resumo:
Averaged event-related potential (ERP) data recorded from the human scalp reveal electroencephalographic (EEG) activity that is reliably time-locked and phase-locked to experimental events. We report here the application of a method based on information theory that decomposes one or more ERPs recorded at multiple scalp sensors into a sum of components with fixed scalp distributions and sparsely activated, maximally independent time courses. Independent component analysis (ICA) decomposes ERP data into a number of components equal to the number of sensors. The derived components have distinct but not necessarily orthogonal scalp projections. Unlike dipole-fitting methods, the algorithm does not model the locations of their generators in the head. Unlike methods that remove second-order correlations, such as principal component analysis (PCA), ICA also minimizes higher-order dependencies. Applied to detected—and undetected—target ERPs from an auditory vigilance experiment, the algorithm derived ten components that decomposed each of the major response peaks into one or more ICA components with relatively simple scalp distributions. Three of these components were active only when the subject detected the targets, three other components only when the target went undetected, and one in both cases. Three additional components accounted for the steady-state brain response to a 39-Hz background click train. Major features of the decomposition proved robust across sessions and changes in sensor number and placement. This method of ERP analysis can be used to compare responses from multiple stimuli, task conditions, and subject states.
Resumo:
Recently, a new method to analyze biological nonstationary stochastic variables has been presented. The method is especially suitable to analyze the variation of one biological variable with respect to changes of another variable. Here, it is illustrated by the change of the pulmonary blood pressure in response to a step change of oxygen concentration in the gas that an animal breathes. The pressure signal is resolved into the sum of a set of oscillatory intrinsic mode functions, which have zero “local mean,” and a final nonoscillatory mode. With this device, we obtain a set of “mean trends,” each of which represents a “mean” in a definitive sense, and together they represent the mean trend systematically with different degrees of oscillatory content. Correspondingly, the oscillatory content of the signal about any mean trend can be represented by a set of partial sums of intrinsic mode functions. When the concept of “indicial response function” is used to describe the change of one variable in response to a step change of another variable, we now have a set of indicial response functions of the mean trends and another set of indicial response functions to describe the energy or intensity of oscillations about each mean trend. Each of these can be represented by an analytic function whose coefficients can be determined by a least-squares curve-fitting procedure. In this way, experimental results are stated sharply by analytic functions.
Resumo:
Blood vessel elasticity is important to physiology and clinical problems involving surgery, angioplasty, tissue remodeling, and tissue engineering. Nonlinearity in blood vessel elasticity in vivo is important to the formation of solitons in arterial pulse waves. It is well known that the stress–strain relationship of the blood vessel is nonlinear in general, but a controversy exists on how nonlinear it is in the physiological range. Another controversy is whether the vessel wall is biaxially isotropic. New data on canine aorta were obtained from a biaxial testing machine over a large range of finite strains referred to the zero-stress state. A new pseudo strain energy function is used to examine these questions critically. The stress–strain relationship derived from this function represents the sum of a linear stress–strain relationship and a definitely nonlinear relationship. This relationship fits the experimental data very well. With this strain energy function, we can define a parameter called the degree of nonlinearity, which represents the fraction of the nonlinear strain energy in the total strain energy per unit volume. We found that for the canine aorta, the degree of nonlinearity varies from 5% to 30%, depending on the magnitude of the strains in the physiological range. In the case of canine pulmonary artery in the arch region, Debes and Fung [Debes, J. C. & Fung, Y. C.(1995) Am. J. Physiol. 269, H433–H442] have shown that the linear regime of the stress–strain relationship extends from the zero-stress state to the homeostatic state and beyond. Both vessels, however, are anisotropic in both the linear and nonlinear regimes.
Resumo:
We announce a proof of H-stability for the quantized radiation field, with ultraviolet cutoff, coupled to arbitrarily many non-relativistic quantized electrons and static nuclei. Our result holds for arbitrary atomic numbers and fine structure constant. We also announce bounds for the energy of many electrons and nuclei in a classical vector potential and for the eigenvalue sum of a one-electron Pauli Hamiltonian with magnetic field.
Resumo:
Arc repressor mutants containing from three to 15 multiple-alanine substitutions have spectral properties expected for native Arc proteins, form heterodimers with wild-type Arc, denature cooperatively with Tms equal to or greater than wild type, and, in some cases, fold as much as 30-fold faster and unfold as much as 50-fold slower than wild type. Two of the mutants, containing a total of 14 different substitutions, also footprint operator DNA in vitro. The stability of some of the proteins with multiple-alanine mutations is significantly greater than that predicted from the sum of the single substitutions, suggesting that a subset of the wild-type residues in Arc may interact in an unfavorable fashion. Overall, these results show that almost half of the residues in Arc can be replaced by alanine en masse without compromising the ability of this small, homodimeric protein to fold into a stable, native-like structure.
Resumo:
Variability in population growth rate is thought to have negative consequences for organism fitness. Theory for matrix population models predicts that variance in population growth rate should be the sum of the variance in each matrix entry times the squared sensitivity term for that matrix entry. I analyzed the stage-specific demography of 30 field populations from 17 published studies for pattern between the variance of a demographic term and its contribution to population growth. There were no instances in which a matrix entry both was highly variable and had a large effect on population growth rate; instead, correlations between estimates of temporal variance in a term and contribution to population growth (sensitivity or elasticity) were overwhelmingly negative. In addition, survivorship or growth sensitivities or elasticities always exceeded those of fecundity, implying that the former two terms always contributed more to population growth rate. These results suggest that variable life history stages tend to contribute relatively little to population growth rates because natural selection may alter life histories to minimize stages with both high sensitivity and high variation.
Resumo:
Zip1 is a yeast synaptonemal complex (SC) central region component and is required for normal meiotic recombination and crossover interference. Physical analysis of meiotic recombination in a zip1 mutant reveals the following: Crossovers appear later than normal and at a reduced level. Noncrossover recombinants, in contrast, seem to appear in two phases: (i) a normal number appear with normal timing and (ii) then additional products appear late, at the same time as crossovers. Also, Holliday junctions are present at unusually late times, presumably as precursors to late-appearing products. Red1 is an axial structure component required for formation of cytologically discernible axial elements and SC and maximal levels of recombination. In a red1 mutant, crossovers and noncrossovers occur at coordinately reduced levels but with normal timing. If Zip1 affected recombination exclusively via SC polymerization, a zip1 mutation should confer no recombination defect in a red1 strain background. But a red1 zip1 double mutant exhibits the sum of the two single mutant phenotypes, including the specific deficit of crossovers seen in a zip1 strain. We infer that Zip1 plays at least one role in recombination that does not involve SC polymerization along the chromosomes. Perhaps some Zip1 molecules act first in or around the sites of recombinational interactions to influence the recombination process and thence nucleate SC formation. We propose that a Zip1-dependent, pre-SC transition early in the recombination reaction is an essential component of meiotic crossover control. A molecular basis for crossover/noncrossover differentiation is also suggested.
Resumo:
High density lipoproteins (HDLs) play a role in two processes that include the amelioration of atheroma formation and the centripetal flow of cholesterol from the extrahepatic organs to the liver. This study tests the hypothesis that the flow of sterol from the peripheral organs to the liver is dependent upon circulating HDL concentrations. Transgenic C57BL/6 mice were used that expressed variable amounts of simian cholesteryl ester-transfer protein (CETP). The rate of centripetal cholesterol flux was quantitated as the sum of the rates of cholesterol synthesis and low density lipoprotein-cholesterol uptake in the extrahepatic tissues. Steady-state concentrations of cholesterol carried in HDL (HDL-C) varied from 59 to 15 mg/dl and those of apolipoprotein AI from 138 to 65 mg/dl between the control mice (CETPc) and those maximally expressing the transfer protein (CETP+). There was no difference in the size of the extrahepatic cholesterol pools in the CETPc and CETP+ animals. Similarly, the rates of cholesterol synthesis (83 and 80 mg/day per kg, respectively) and cholesterol carried in low density lipoprotein uptake (4 and 3 mg/day per kg, respectively) were virtually identical in the two groups. Thus, under circumstances where the steady-state concentration of HDL-C varied 4-fold, the centripetal flux of cholesterol from the peripheral organs to the liver was essentially constant at approximately 87 mg/day per kg. These studies demonstrate that neither the concentration of HDL-C or apolipoprotein AI nor the level of CETP activity dictates the magnitude of centripetal cholesterol flux from the extrahepatic organs to the liver, at least in the mouse.
Resumo:
The solvation energies of salt bridges formed between the terminal carboxyl of the host pentapeptide AcWL- X-LL and the side chains of Arg or Lys in the guest (X) position have been measured. The energies were derived from octanol-to-buffer transfer free energies determined between pH 1 and pH 9. 13C NMR measurements show that the salt bridges form in the octanol phase, but not in the buffer phase, when the side chains and the terminal carboxyl group are charged. The free energy of salt-bridge formation in octanol is approximately -4 kcal/mol (1 cal = 4.184 J), which is equal to or slightly larger than the sum of the solvation energies of noninteracting pairs of charged side chains. This is about one-half the free energy that would result from replacing a charge pair in octanol with a pair of hydrophobic residues of moderate size. Therefore, salt bridging in octanol can change the favorable aqueous solvation energy of a pair of oppositely charged residues to neutral or slightly unfavorable but cannot provide the same free energy decrease as hydrophobic residues. This is consistent with recent computational and experimental studies of protein stability.
Resumo:
Recent results have demonstrated that the spin trapping agent N-tert-butyl-alpha-phenylnitrone (PBN) reduces infarct size due to middle cerebral artery occlusion (MCAO), even when given after ischemia. The objective of the present study was to explore whether PBN influences recovery of energy metabolism. MCAO of 2-hr duration was induced in rats by an intraluminal filament technique. Brains were frozen in situ at the end of ischemia and after 1, 2, and 4 hr of recirculation. PBN was given 1 hr after recirculation. Neocortical focal and perifocal ("penumbra") areas were sampled for analyses of phosphocreatine (PCr), creatine, ATP, ADP, AMP, glycogen, glucose, and lactate. The penumbra showed a moderate-to-marked decrease and the focus showed a marked decrease in PCr and ATP concentrations, a decline in the sum of adenine nucleotides, near-depletion of glycogen, and an increase in lactate concentration after 2 hr of ischemia. Recirculation for 1 hr led to only a partial recovery of energy state, with little further improvement after 2 hr and signs of secondary deterioration after 4 hr, particularly in the focus. After 4 hr of recirculation, PBN-treated animals showed pronounced recovery of energy state, with ATP and lactate contents in both focus and penumbra approaching normal values. Although an effect of PBN on mitochondria cannot be excluded, the results suggest that PBN acts by preventing a gradual compromise of microcirculation. The results justify a reevaluation of current views on the pathophysiology of focal ischemic damage and suggest that a therapeutic window of many hours exists in stroke.
Resumo:
Os controladores eletrônicos de pulverização visam minimizar a variação das taxas de insumos aplicadas no campo. Eles fazem parte de um sistema de controle, e permitem a compensação da variação de velocidade de deslocamento do pulverizador durante a operação. Há vários tipos de controladores eletrônicos de pulverização disponíveis no mercado e uma das formas de selecionar qual o mais eficiente nas mesmas condições, ou seja, em um mesmo sistema de controle, é quantificar o tempo de resposta do sistema para cada controlador específico. O objetivo desse trabalho foi estimar os tempos de resposta para mudanças de velocidade de um sistema eletrônico de pulverização via modelos de regressão não lineares, estes, resultantes da soma de regressões lineares ponderadas por funções distribuição acumulada. Os dados foram obtidos no Laboratório de Tecnologia de Aplicação, localizado no Departamento de Engenharia de Biossistemas da Escola Superior de Agricultura \"Luiz de Queiroz\", Universidade de São Paulo, no município de Piracicaba, São Paulo, Brasil. Os modelos utilizados foram o logístico e de Gompertz, que resultam de uma soma ponderada de duas regressões lineares constantes com peso dado pela função distribuição acumulada logística e Gumbell, respectivamente. Reparametrizações foram propostas para inclusão do tempo de resposta do sistema de controle nos modelos, com o objetivo de melhorar a interpretação e inferência estatística dos mesmos. Foi proposto também um modelo de regressão não linear difásico que resulta da soma ponderada de regressões lineares constantes com peso dado pela função distribuição acumulada Cauchy seno hiperbólico exponencial. Um estudo de simulação foi feito, utilizando a metodologia de Monte Carlo, para avaliar as estimativas de máxima verossimilhança dos parâmetros do modelo.
Resumo:
Although the anthropometric profiles of Olympic athletes, as a group, are well known, there is still a need for specific reference data for each sport given that each discipline has its own characteristics. This study has been designed considering the limited number of articles that focus on the anthropometric characteristics of artistic roller skating and, more specifically, the figures discipline. The aim of this study is twofold: firstly, to define the anthropometric profile, body composition and somatotype of male and female artistic roller figure skaters in order to establish specific profiles; and, secondly, to establish the differences between the anthropometric profiles, body compositions and somatotypes of male and female skaters. Twenty-nine professional roller skaters (male = 15, female = 14) underwent measurements of standard anthropometry (height, body mass, arm span, 8 skinfolds, 3 breadths and 11 girths). The somatotype was measured using the Heath-Carter methods. A T-Student test for independent samples was conducted in order to assess the differences between male and female skaters. Significant statistical differences were found between male and female skaters in terms of body mass, height, arm span, the sum of four and six skinfolds and all skinfold measurements. Male skaters have a BMI of 21.4± 1.6 and female skaters have a BMI of 21.5 ± 2.4. The results indicate that arm span is an important characteristic for skaters. Mesomorphy is the most important component, followed by endomorphy, for male and female skaters. Male skaters have an endomesomorphic somatotype (3.5-4.5-2.5) and female skaters have a balanced mesomorphic somatotype (3.3-4.1-2.9).
Resumo:
We present an analysis of a pointed 141 ks Chandra high-resolution transmission gratings observation of the Be X-ray emitting star HD110432, a prominent member of the γ Cas analogs. This observation represents the first high-resolution spectrum taken for this source as well as the longest uninterrupted observation of any γ Cas analog. The Chandra light curve shows a high variability but its analysis fails to detect any coherent periodicity up to a frequency of 0.05 Hz. Hardness ratio versus intensity analyses demonstrate that the relative contributions of the [1.5-3] Å, [3-6] Å, and [6-16] Å energy bands to the total flux change rapidly in the short term. The analysis of the Chandra High Energy Transmission Grating (HETG) spectrum shows that, to correctly describe the spectrum, three model components are needed. Two of those components are optically thin thermal plasmas of different temperatures (kT ≈ 8-9 and 0.2-0.3 keV, respectively) described by the models vmekal or bvapec. The Fe abundance in each of these two components appears equal within the errors and is slightly subsolar with Z ≈ 0.75 Z ☉. The bvapec model better describes the Fe L transitions, although it cannot fit well the Na XI Lyα line at 10.02 Å, which appears to be overabundant. Two different models seem to describe well the third component. One possibility is a third hot optically thin thermal plasma at kT = 16-21 keV with an Fe abundance Z ≈ 0.3 Z ☉, definitely smaller than for the other two thermal components. Furthermore, the bvapec model describes well the Fe K shell transitions because it accounts for the turbulence broadening of the Fe XXV and Fe XXVI lines with a v turb ≈ 1200 km s–1. These two lines, contributed mainly by the hot thermal plasma, are significantly wider than the Fe Kα line whose FWHM < 5 mÅ is not resolved by Chandra. Alternatively, the third component can be described by a power law with a photon index of Γ = 1.56. In either case, the Chandra HETG spectrum establishes that each one of these components must be modified by distinct absorption columns. The analysis of a noncontemporaneous 25 ks Suzaku observation shows the presence of a hard tail extending up to at least 33 keV. The Suzaku spectrum is described with the sum of two components: an optically thin thermal plasma at kT ≈ 9 keV and Z ≈ 0.74 Z ☉, and a very hot second plasma with kT ≈ 33 keV or, alternatively, a power law with photon index of Γ = 1.58. In either case, each one of the two components must be affected by different absorption columns. Therefore, the kT = 8-9 keV component is definitely needed while the nature of the harder emission cannot be unambiguously established with the present data sets. The analysis of the Si XIII and S XV He-like triplets present in the Chandra spectrum points to a very dense (ne ~ 1013 cm–3) plasma located either close to the stellar surface (r < 3R *) of the Be star or, alternatively, very close (r ~ 1.5R WD) to the surface of a (hypothetical) white dwarf companion. We argue, however, that the available data support the first scenario.
Resumo:
From a set of gonioapparent automotive samples from different manufacturers we selected 28 low-chroma color pairs with relatively small color differences predominantly in lightness. These color pairs were visually assessed with a gray scale at six different viewing angles by a panel of 10 observers. Using the Standardized Residual Sum of Squares (STRESS) index, the results of our visual experiment were tested against predictions made by 12 modern color-difference formulas. From a weighted STRESS index accounting for the uncertainty in visual assessments, the best prediction of our whole experiment was achieved using AUDI2000, CAM02-SCD, CAM02-UCS and OSA-GP-Euclidean color-difference formulas, which were no statistically significant different among them. A two-step optimization of the original AUDI2000 color-difference formula resulted in a modified AUDI2000 formula which performed both, significantly better than the original formula and below the experimental inter-observer variability. Nevertheless the proposal of a new revised AUDI2000 color-difference formula requires additional experimental data.