786 resultados para Structural model of child well-being
Resumo:
The objective of this work was to construct a dynamic model of hepatic amino acid metabolism in the lactating dairy cow that could be parameterized using net flow data from in vivo experiments. The model considers 22 amino acids, ammonia, urea, and 13 energetic metabolites, and was parameterized using a steady-state balance model and two in vivo, net flow experiments conducted with mid-lactation dairy cows. Extracellular flows were derived directly from the observed data. An optimization routine was used to derive nine intracellular flows. The resulting dynamic model was found to be stable across a range of inputs suggesting that it can be perturbed and applied to other physiological states. Although nitrogen was generally in balance, leucine was in slight deficit compared to predicted needs for export protein synthesis, suggesting that an alternative source of leucine (e.g. peptides) was utilized. Simulations of varying glucagon concentrations indicated that an additional 5 mol/d of glucose could be synthesized at the reference substrate concentrations and blood flows. The increased glucose production was supported by increased removal from blood of lactate, glutamate, aspartate, alanine, asparagine, and glutamine. As glucose Output increased, ketone body and acetate release increased while CO2 release declined. The pattern of amino acids appearing in hepatic vein blood was affected by changes in amino acid concentration in portal vein blood, portal blood flow rate and glucagon concentration, with methionine and phenylalanine being the most affected of essential amino acids. Experimental evidence is insufficient to determine whether essential amino acids are affected by varying gluconeogenic demands. (C) 2004 Published by Elsevier Ltd.
Resumo:
Dormancy is an adaptive trait in seed populations that helps ensure that seed germination is distributed over time and occurs in environmental conditions suitable for seedling growth. Several genes.. associated with seed dormancy in various plant species, have been integrated into a hypothetical dormancy model for Avena fatua L. (wild oats). Generally, the synthesis of, and sensitivity to, abscisic acid (ABA) during imbibition determines whether genes similar to those during maturation are expressed leading to a maintenance of dormancy during extended imbibition. Alternatively, there may be a shift towards expression of genes associated with gibberellins leading to germination. Environmental factors during maturation, after-ripening and imbibition are likely to interact with the genotype to affect gene expression and hence whether or not a seed germinates. In spite of the difficulties of working on a hexaploid species, A. fatua was selected for study because of its worldwide importance as a weed. Dormant and non-dormant genotypes of this species were also available. Gene expression studies are being carried out on three A.fatua genotypes produced tinder different environmental conditions to investigate the role of specific genes in dormancy and genotype X environment interactions in relation to dormancy.
Resumo:
This article examines shock persistence in agricultural and industrial output in India. Drawing on the dual economy literature, the linkages between the sectors through the terms of trade are emphasised. However different dual economy models make differing assumptions regarding the categorisation of variables as being either endogenous or exogenous and this distinction is crucial in explaining the pattern of shock persistence. Using annual data for 1955-95, our results show that shocks to both output series are permanent while those to the terms of trade are transient.
Resumo:
Multiscale modeling is emerging as one of the key challenges in mathematical biology. However, the recent rapid increase in the number of modeling methodologies being used to describe cell populations has raised a number of interesting questions. For example, at the cellular scale, how can the appropriate discrete cell-level model be identified in a given context? Additionally, how can the many phenomenological assumptions used in the derivation of models at the continuum scale be related to individual cell behavior? In order to begin to address such questions, we consider a discrete one-dimensional cell-based model in which cells are assumed to interact via linear springs. From the discrete equations of motion, the continuous Rouse [P. E. Rouse, J. Chem. Phys. 21, 1272 (1953)] model is obtained. This formalism readily allows the definition of a cell number density for which a nonlinear "fast" diffusion equation is derived. Excellent agreement is demonstrated between the continuum and discrete models. Subsequently, via the incorporation of cell division, we demonstrate that the derived nonlinear diffusion model is robust to the inclusion of more realistic biological detail. In the limit of stiff springs, where cells can be considered to be incompressible, we show that cell velocity can be directly related to cell production. This assumption is frequently made in the literature but our derivation places limits on its validity. Finally, the model is compared with a model of a similar form recently derived for a different discrete cell-based model and it is shown how the different diffusion coefficients can be understood in terms of the underlying assumptions about cell behavior in the respective discrete models.
Resumo:
Polycondensation of 2,6-dihydroxynaphthalene with 4,4'-bis(4"-fluorobenzoyl)biphenyl affords a novel, semicrystalline poly(ether ketone) with a melting point of 406 degreesC and glass transition temperature (onset) of 168 degreesC. Molecular modeling and diffraction-simulation studies of this polymer, coupled with data from the single-crystal structure of an oligomer model, have enabled the crystal and molecular structure of the polymer to be determined from X-ray powder data. This structure-the first for any naphthalene-containing poly(ether ketone)-is fully ordered, in monoclinic space group P2(1)/b, with two chains per unit cell. Rietveld refinement against the experimental powder data gave a final agreement factor (R-wp) of 6.7%.
Resumo:
Complexes have been synthesised with bis(2-pyridine carboxaldehyde) ethylenediimine (1) and bis(2-pyridine carboxaldehyde)propylene-1,3-diimine (2) with all of the available lanthanide trinitrates. Crystal structures were obtained for all but one complex with 1 and for all but one complex with 2. Four distinct structural types were established for 1 but only two for 2, although in all cases the structures contained one ligand bound to the metal in a tetradentate fashion. With 1, the four different structures of the lanthanide(III) nitrate complexes included 11-coordinate [Ln(1)(NO3)(3)(H2O)] for Ln = La; 10 coordinate [Ln(1)(NO3)(3)(H2O)] with one monodentate and two bidentate nitrates for Ln = Ce, then 10-coordinate [Ln(1)(NO3)(3)] for Ln = Pr-Yb with three bidentate nitrates; and 9-coordinate [Ln(1)(NO3)(3)] with one monodentate and two bidentate nitrates for Ln = Lu. On the other hand for 2 only two distinct types of structure are obtained, the first type with Ln = La-Pr and the second type for Ln = Sm-Lu, although all are 10-coordinate with stoichiometry [Ln(2)(NO3)(3)]. The difference between the two types is in the disposition of the ligand relative to the nitrates. With the larger lanthanides La-Pr the ligand is found on one side of the coordination sphere with the three nitrate anions on the other. In these structures, the ligand is folded such that the angle between the two pyridine rings approaches 90degrees, while with the smaller lanthanides Sm-Lu, two nitrates are found on one side of the ligand and one nitrate on the other and the ligand is in an extended conformation such that the two pyridine rings are close to being coplanar. In both series of structures, the Ln-N and Ln-O bond lengths were consistent with the lanthanide contraction though there are significant variations between ostensibly equivalent bonds which are indicative of intramolecular hydrogen bonding and steric crowding in the complexes. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
X-ray reflectivity (XR) and grazing incidence X-ray diffraction (GIXD) have been used to examine an oxyethylene-b-oxybutylene (E23B8) copolymer film at the air-water interface. The XR data were fitted using both a one- and a two-layer model that outputted the film thickness, roughness, and electron density. The best fit to the experimental data was obtained using a two-layer model (representing the oxyethylene and oxybutylene blocks, respectively), which showed a rapid thickening of the copolymer film at pressures above 7 mN/m. The large roughness values found indicate a significant degree of intermixing between the blocks and back up the GIXD data, which showed no long range lateral ordering within the layer. It was found from the electron density model results that there is a large film densification at 7 mN/m, possibly suggesting conformational changes within the film, even though no such change occurs on the pressure-area isotherm at the same surface pressure.
Resumo:
Sixteen neutral mixed ligand thiosemicarbazone complexes of ruthenium having general formula [Ru(PPh3)(2)L-2], where LH = 1-(arylidine)4-aryl thiosemicarbazones, have been synthesized and characterized. All complexes are diamagnetic and hence ruthenium is in the +2 oxidation state (low-spin d(6), S = 0). The complexes show several intense peaks in the visible region due to allowed metal to ligand charge transfer transitions. The structures of four of the complexes have been determined by single-crystal X-ray diffraction and they show that thiosemicarbazone ligands coordinate to the ruthenium center through the hydrazinic nitrogen and sulfur forming four-membered chelate rings with ruthenium in N2S2P2 coordination environment. In dichloromethane solution, the complexes show two quasi-reversible oxidative responses corresponding to loss of electron from HOMO and HOMO - 1. The E-0 values of the above two oxidations shows good linear relationship with Hammett substituents constant (sigma) as well as with the HOMO energy of the molecules calculated by the EHMO method. A DFT calculation on one representative complex suggests that there is appreciable contribution of the sulfur p-orbitals to the HOMO and HOMO - 1. Thus, assignment of the oxidation state of the metal in such complexes must be made with caution. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
When people monitor a visual stream of rapidly presented stimuli for two targets (T1 and T2), they often miss T2 if it falls into a time window of about half a second after T1 onset-the attentional blink (AB). We provide an overview of recent neuroscientific studies devoted to analyze the neural processes underlying the AB and their temporal dynamics. The available evidence points to an attentional network involving temporal, right-parietal and frontal cortex, and suggests that the components of this neural network interact by means of synchronization and stimulus-induced desynchronization in the beta frequency range. We set up a neurocognitive scenario describing how the AB might emerge and why it depends on the presence of masks and the other event(s) the targets are embedded in. The scenario supports the idea that the AB arises from "biased competition", with the top-down bias being generated by parietal-frontal interactions and the competition taking place between stimulus codes in temporal cortex.
Resumo:
Anxiety disorders are common among parents of anxious children and have been found to impede child treatment outcomes, yet it is unclear whether it is parental anxiety that needs to be targeted in therapy or associated parental behaviours. Twenty-two children (6-12 years) with a current anxiety disorder and their mothers received cognitive-behavioural treatment (CBT) for child anxiety. In addition, of the 12 mothers who met criteria for a current anxiety disorder, 6 received CBT for their own disorder. Assessments were made of the mother-child interaction. The main findings were: (1) children did less well from treatment where their mothers had a current anxiety disorder; (2) treatment of maternal anxiety disorder did not improve child treatment outcome; and (3) maternal overinvolvement and expression of fear was associated with child treatment outcome. The results suggest that in the context of maternal anxiety disorder, child treatment outcome may be improved by specifically targeting parenting behaviours. Copyright (C) 2008 John Wiley & Sons, Ltd.
Resumo:
Anxiety of childhood is a common and serious condition. The past decade has seen an increase in treatment-focussed research, with recent trials tending to give greater attention to parents in the treatment process. This review examines the efficacy of family-based cognitive behaviour therapy and attempts to delineate some of the factors that might have an impact on its efficacy. The choice and timing of outcome measure, age and gender of the child, level of parental anxiety, severity and type of child anxiety and treatment format and content are scrutinised. The main conclusions are necessarily tentative, but it seems likely that Family Cognitive Behaviour Therapy (FCBT) is superior to no treatment, and, for some outcome measures, also superior to Child Cognitive Behaviour Therapy (CCBT). Where FCBT is successful, the results are consistently maintained at follow-up. It appears that where a parent is anxious, and this is not addressed, outcomes are less good. However, for children of anxious parents, FCBT is probably more effective than CCBT. What is most clear is that large, well-designed studies, examining these factors alone and in combination, are now needed.
Resumo:
A unified view on the interfacial instability in a model of aluminium reduction cells in the presence of a uniform, vertical, background magnetic field is presented. The classification of instability modes is based on the asymptotic theory for high values of parameter β, which characterises the ratio of the Lorentz force based on the disturbance current, and gravity. It is shown that the spectrum of the travelling waves consists of two parts independent of the horizontal cross-section of the cell: highly unstable wall modes and stable or weakly unstable centre, or Sele’s modes. The wall modes with the disturbance of the interface being localised at the sidewalls of the cell dominate the dynamics of instability. Sele’s modes are characterised by a distributed disturbance over the whole horizontal extent of the cell. As β increases these modes are stabilized by the field.
Resumo:
We present a novel kinetic multi-layer model that explicitly resolves mass transport and chemical reaction at the surface and in the bulk of aerosol particles (KM-SUB). The model is based on the PRA framework of gas-particle interactions (Poschl-Rudich-Ammann, 2007), and it includes reversible adsorption, surface reactions and surface-bulk exchange as well as bulk diffusion and reaction. Unlike earlier models, KM-SUB does not require simplifying assumptions about steady-state conditions and radial mixing. The temporal evolution and concentration profiles of volatile and non-volatile species at the gas-particle interface and in the particle bulk can be modeled along with surface concentrations and gas uptake coefficients. In this study we explore and exemplify the effects of bulk diffusion on the rate of reactive gas uptake for a simple reference system, the ozonolysis of oleic acid particles, in comparison to experimental data and earlier model studies. We demonstrate how KM-SUB can be used to interpret and analyze experimental data from laboratory studies, and how the results can be extrapolated to atmospheric conditions. In particular, we show how interfacial and bulk transport, i.e., surface accommodation, bulk accommodation and bulk diffusion, influence the kinetics of the chemical reaction. Sensitivity studies suggest that in fine air particulate matter oleic acid and compounds with similar reactivity against ozone (carbon-carbon double bonds) can reach chemical lifetimes of many hours only if they are embedded in a (semi-)solid matrix with very low diffusion coefficients (< 10(-10) cm(2) s(-1)). Depending on the complexity of the investigated system, unlimited numbers of volatile and non-volatile species and chemical reactions can be flexibly added and treated with KM-SUB. We propose and intend to pursue the application of KM-SUB as a basis for the development of a detailed master mechanism of aerosol chemistry as well as for the derivation of simplified but realistic parameterizations for large-scale atmospheric and climate models.
Resumo:
We present a novel kinetic multi-layer model that explicitly resolves mass transport and chemical reaction at the surface and in the bulk of aerosol particles (KM-SUB). The model is based on the PRA framework of gas–particle interactions (P¨oschl et al., 5 2007), and it includes reversible adsorption, surface reactions and surface-bulk exchange as well as bulk diffusion and reaction. Unlike earlier models, KM-SUB does not require simplifying assumptions about steady-state conditions and radial mixing. The temporal evolution and concentration profiles of volatile and non-volatile species at the gas-particle interface and in the particle bulk can be modeled along with surface 10 concentrations and gas uptake coefficients. In this study we explore and exemplify the effects of bulk diffusion on the rate of reactive gas uptake for a simple reference system, the ozonolysis of oleic acid particles, in comparison to experimental data and earlier model studies. We demonstrate how KM-SUB can be used to interpret and analyze experimental data from laboratory stud15 ies, and how the results can be extrapolated to atmospheric conditions. In particular, we show how interfacial transport and bulk transport, i.e., surface accommodation, bulk accommodation and bulk diffusion, influence the kinetics of the chemical reaction. Sensitivity studies suggest that in fine air particulate matter oleic acid and compounds with similar reactivity against ozone (C=C double bonds) can reach chemical lifetimes of 20 multiple hours only if they are embedded in a (semi-)solid matrix with very low diffusion coefficients (10−10 cm2 s−1). Depending on the complexity of the investigated system, unlimited numbers of volatile and non-volatile species and chemical reactions can be flexibly added and treated with KM-SUB. We propose and intend to pursue the application of KM-SUB 25 as a basis for the development of a detailed master mechanism of aerosol chemistry as well as for the derivation of simplified but realistic parameterizations for large-scale atmospheric and climate models.