861 resultados para Stereo matching
Resumo:
This article describes the simulation and characterization of an ultrasonic transducer using a new material called Rexolite to be used as a matching element. This transducer was simulated using a commercial piezoelectric ceramic PIC255 at 8 MHz. Rexolite, the new material, presents an excellent acoustic matching, specially in terms of the acoustic impedance of water. Finite elements simulations were used in this work. Rexolite was considered as a suitable material in the construction of the transducer due to its malleability and acoustic properties, to validate the simulations a prototype transducer was constructed. Experimental measurements were used to determine the resonance frequency of the prototype transducer. Simulated and experimental results were very similar showing that Rexolite may be an excellent matching, particularly for medical applications.
Resumo:
In recent years, remote sensing imaging systems for the measurement of oceanic sea states have attracted renovated attention. Imaging technology is economical, non-invasive and enables a better understanding of the space-time dynamics of ocean waves over an area rather than at selected point locations of previous monitoring methods (buoys, wave gauges, etc.). We present recent progress in space-time measurement of ocean waves using stereo vision systems on offshore platforms, which focus on sea states with wavelengths in the range of 0.01 m to 10 m. Classical epipolar techniques and modern variational methods are reviewed to reconstruct the sea surface from the stereo pairs sequentially in time. The statistical and spectral properties of the resulting observed waves are analyzed. Current improvements of the variational methods are discussed as future lines of research.
Resumo:
In recent years, remote sensing imaging systems for the measurement of oceanic sea states have attracted renovated attention. Imaging technology is economical, non-invasive and enables a better understanding of the space-time dynamics of ocean waves over an area rather than at selected point locations of previous monitoring methods (buoys, wave gauges, etc.). We present recent progress in space-time measurement of ocean waves using stereo vision systems on offshore platforms, which focus on sea states with wavelengths in the range of 0.01 m to 1 m. Both traditional disparity-based systems and modern elevation-based ones are presented in a variational optimization framework: the main idea is to pose the stereoscopic reconstruction problem of the surface of the ocean in a variational setting and design an energy functional whose minimizer is the desired temporal sequence of wave heights. The functional combines photometric observations as well as spatial and temporal smoothness priors. Disparity methods estimate the disparity between images as an intermediate step toward retrieving the depth of the waves with respect to the cameras, whereas elevation methods estimate the ocean surface displacements directly in 3-D space. Both techniques are used to measure ocean waves from real data collected at offshore platforms in the Black Sea (Crimean Peninsula, Ukraine) and the Northern Adriatic Sea (Venice coast, Italy). Then, the statistical and spectral properties of the resulting observed waves are analyzed. We show the advantages and disadvantages of the presented stereo vision systems and discuss future lines of research to improve their performance in critical issues such as the robustness of the camera calibration in spite of undesired variations of the camera parameters or the processing time that it takes to retrieve ocean wave measurements from the stereo videos, which are very large datasets that need to be processed efficiently to be of practical usage. Multiresolution and short-time approaches would improve efficiency and scalability of the techniques so that wave displacements are obtained in feasible times.
Resumo:
A real-time large scale part-to-part video matching algorithm, based on the cross correlation of the intensity of motion curves, is proposed with a view to originality recognition, video database cleansing, copyright enforcement, video tagging or video result re-ranking. Moreover, it is suggested how the most representative hashes and distance functions - strada, discrete cosine transformation, Marr-Hildreth and radial - should be integrated in order for the matching algorithm to be invariant against blur, compression and rotation distortions: (R; _) 2 [1; 20]_[1; 8], from 512_512 to 32_32pixels2 and from 10 to 180_. The DCT hash is invariant against blur and compression up to 64x64 pixels2. Nevertheless, although its performance against rotation is the best, with a success up to 70%, it should be combined with the Marr-Hildreth distance function. With the latter, the image selected by the DCT hash should be at a distance lower than 1.15 times the Marr-Hildreth minimum distance.
Resumo:
Remote sensing imaging systems for the measurement of oceanic sea states have recently attracted renovated attention. Imaging technology is economical, non-invasive and enables a better understanding of the space-time dynamics of ocean waves over an area rather than at selected point locations of previous monitoring methods (buoys, wave gauges, etc.). We present recent progress in space-time measurement of ocean waves using stereo vision systems on offshore platforms. Both traditional disparity-based systems and modern elevation-based ones are presented in a variational optimization framework: the main idea is to pose the stereoscopic reconstruction problem of the surface of the ocean in a variational setting and design an energy functional whose minimizer is the desired temporal sequence of wave heights. The functional combines photometric observations as well as spatial and temporal smoothness priors. Disparity methods estimate the disparity between images as an intermediate step toward retrieving the depth of the waves with respect to the cameras, whereas elevation methods estimate the ocean surface displacements directly in 3-D space. Both techniques are used to measure ocean waves from real data collected at offshore platforms in the Black Sea (Crimean Peninsula, Ukraine) and the Northern Adriatic Sea (Venice coast, Italy). Then, the statistical and spectral properties of the resulting observed waves are analyzed. We show the advantages and disadvantages of the presented stereo vision systems and discuss the improvement of their performance in critical issues such as the robustness of the camera calibration in spite of undesired variations of the camera parameters.
Resumo:
This paper presents a strategy for solving the feature matching problem in calibrated very wide-baseline camera settings. In this kind of settings, perspective distortion, depth discontinuities and occlusion represent enormous challenges. The proposed strategy addresses them by using geometrical information, specifically by exploiting epipolar-constraints. As a result it provides a sparse number of reliable feature points for which 3D position is accurately recovered. Special features known as junctions are used for robust matching. In particular, a strategy for refinement of junction end-point matching is proposed which enhances usual junction-based approaches. This allows to compute cross-correlation between perfectly aligned plane patches in both images, thus yielding better matching results. Evaluation of experimental results proves the effectiveness of the proposed algorithm in very wide-baseline environments.
Resumo:
In this paper we present an innovative technique to tackle the problem of automatic road sign detection and tracking using an on-board stereo camera. It involves a continuous 3D analysis of the road sign during the whole tracking process. Firstly, a color and appearance based model is applied to generate road sign candidates in both stereo images. A sparse disparity map between the left and right images is then created for each candidate by using contour-based and SURF-based matching in the far and short range, respectively. Once the map has been computed, the correspondences are back-projected to generate a cloud of 3D points, and the best-fit plane is computed through RANSAC, ensuring robustness to outliers. Temporal consistency is enforced by means of a Kalman filter, which exploits the intrinsic smoothness of the 3D camera motion in traffic environments. Additionally, the estimation of the plane allows to correct deformations due to perspective, thus easing further sign classification.
Resumo:
Stereo video techniques are effective for estimating the space-time wave dynamics over an area of the ocean. Indeed, a stereo camera view allows retrieval of both spatial and temporal data whose statistical content is richer than that of time series data retrieved from point wave probes. To prove this, we consider an application of the Wave Acquisition Stereo System (WASS) for the analysis of offshore video measurements of gravity waves in the Northern Adriatic Sea. In particular, we deployed WASS at the oceanographic platform Acqua Alta, off the Venice coast, Italy. Three experimental studies were performed, and the overlapping field of view of the acquired stereo images covered an area of approximately 1100 m2. Analysis of the WASS measurements show that the sea surface can be accurately estimated in space and time together, yielding associated directional spectra and wave statistics that agree well with theoretical models. From the observed wavenumber-frequency spectrum one can also predict the vertical profile of the current flow underneath the wave surface. Finally, future improvements of WASS and applications are discussed.
Resumo:
Validating modern oceanographic theories using models produced through stereo computer vision principles has recently emerged. Space-time (4-D) models of the ocean surface may be generated by stacking a series of 3-D reconstructions independently generated for each time instant or, in a more robust manner, by simultaneously processing several snapshots coherently in a true ?4-D reconstruction.? However, the accuracy of these computer-vision-generated models is subject to the estimations of camera parameters, which may be corrupted under the influence of natural factors such as wind and vibrations. Therefore, removing the unpredictable errors of the camera parameters is necessary for an accurate reconstruction. In this paper, we propose a novel algorithm that can jointly perform a 4-D reconstruction as well as correct the camera parameter errors introduced by external factors. The technique is founded upon variational optimization methods to benefit from their numerous advantages: continuity of the estimated surface in space and time, robustness, and accuracy. The performance of the proposed algorithm is tested using synthetic data produced through computer graphics techniques, based on which the errors of the camera parameters arising from natural factors can be simulated.
Resumo:
El principal objetivo de este trabajo es proporcionar una solución en tiempo real basada en visión estéreo o monocular precisa y robusta para que un vehículo aéreo no tripulado (UAV) sea autónomo en varios tipos de aplicaciones UAV, especialmente en entornos abarrotados sin señal GPS. Este trabajo principalmente consiste en tres temas de investigación de UAV basados en técnicas de visión por computador: (I) visual tracking, proporciona soluciones efectivas para localizar visualmente objetos de interés estáticos o en movimiento durante el tiempo que dura el vuelo del UAV mediante una aproximación adaptativa online y una estrategia de múltiple resolución, de este modo superamos los problemas generados por las diferentes situaciones desafiantes, tales como cambios significativos de aspecto, iluminación del entorno variante, fondo del tracking embarullado, oclusión parcial o total de objetos, variaciones rápidas de posición y vibraciones mecánicas a bordo. La solución ha sido utilizada en aterrizajes autónomos, inspección de plataformas mar adentro o tracking de aviones en pleno vuelo para su detección y evasión; (II) odometría visual: proporciona una solución eficiente al UAV para estimar la posición con 6 grados de libertad (6D) usando únicamente la entrada de una cámara estéreo a bordo del UAV. Un método Semi-Global Blocking Matching (SGBM) eficiente basado en una estrategia grueso-a-fino ha sido implementada para una rápida y profunda estimación del plano. Además, la solución toma provecho eficazmente de la información 2D y 3D para estimar la posición 6D, resolviendo de esta manera la limitación de un punto de referencia fijo en la cámara estéreo. Una robusta aproximación volumétrica de mapping basada en el framework Octomap ha sido utilizada para reconstruir entornos cerrados y al aire libre bastante abarrotados en 3D con memoria y errores correlacionados espacialmente o temporalmente; (III) visual control, ofrece soluciones de control prácticas para la navegación de un UAV usando Fuzzy Logic Controller (FLC) con la estimación visual. Y el framework de Cross-Entropy Optimization (CEO) ha sido usado para optimizar el factor de escala y la función de pertenencia en FLC. Todas las soluciones basadas en visión en este trabajo han sido probadas en test reales. Y los conjuntos de datos de imágenes reales grabados en estos test o disponibles para la comunidad pública han sido utilizados para evaluar el rendimiento de estas soluciones basadas en visión con ground truth. Además, las soluciones de visión presentadas han sido comparadas con algoritmos de visión del estado del arte. Los test reales y los resultados de evaluación muestran que las soluciones basadas en visión proporcionadas han obtenido rendimientos en tiempo real precisos y robustos, o han alcanzado un mejor rendimiento que aquellos algoritmos del estado del arte. La estimación basada en visión ha ganado un rol muy importante en controlar un UAV típico para alcanzar autonomía en aplicaciones UAV. ABSTRACT The main objective of this dissertation is providing real-time accurate robust monocular or stereo vision-based solution for Unmanned Aerial Vehicle (UAV) to achieve the autonomy in various types of UAV applications, especially in GPS-denied dynamic cluttered environments. This dissertation mainly consists of three UAV research topics based on computer vision technique: (I) visual tracking, it supplys effective solutions to visually locate interesting static or moving object over time during UAV flight with on-line adaptivity approach and multiple-resolution strategy, thereby overcoming the problems generated by the different challenging situations, such as significant appearance change, variant surrounding illumination, cluttered tracking background, partial or full object occlusion, rapid pose variation and onboard mechanical vibration. The solutions have been utilized in autonomous landing, offshore floating platform inspection and midair aircraft tracking for sense-and-avoid; (II) visual odometry: it provides the efficient solution for UAV to estimate the 6 Degree-of-freedom (6D) pose using only the input of stereo camera onboard UAV. An efficient Semi-Global Blocking Matching (SGBM) method based on a coarse-to-fine strategy has been implemented for fast depth map estimation. In addition, the solution effectively takes advantage of both 2D and 3D information to estimate the 6D pose, thereby solving the limitation of a fixed small baseline in the stereo camera. A robust volumetric occupancy mapping approach based on the Octomap framework has been utilized to reconstruct indoor and outdoor large-scale cluttered environments in 3D with less temporally or spatially correlated measurement errors and memory; (III) visual control, it offers practical control solutions to navigate UAV using Fuzzy Logic Controller (FLC) with the visual estimation. And the Cross-Entropy Optimization (CEO) framework has been used to optimize the scaling factor and the membership function in FLC. All the vision-based solutions in this dissertation have been tested in real tests. And the real image datasets recorded from these tests or available from public community have been utilized to evaluate the performance of these vision-based solutions with ground truth. Additionally, the presented vision solutions have compared with the state-of-art visual algorithms. Real tests and evaluation results show that the provided vision-based solutions have obtained real-time accurate robust performances, or gained better performance than those state-of-art visual algorithms. The vision-based estimation has played a critically important role for controlling a typical UAV to achieve autonomy in the UAV application.
Resumo:
Although context could be exploited to improve performance, elasticity and adaptation in most distributed systems that adopt the publish/subscribe (P/S) communication model, only a few researchers have focused on the area of context-aware matching in P/S systems and have explored its implications in domains with highly dynamic context like wireless sensor networks (WSNs) and IoT-enabled applications. Most adopted P/S models are context agnostic or do not differentiate context from the other application data. In this article, we present a novel context-aware P/S model. SilboPS manages context explicitly, focusing on the minimization of network overhead in domains with recurrent context changes related, for example, to mobile ad hoc networks (MANETs). Our approach represents a solution that helps to efficiently share and use sensor data coming from ubiquitous WSNs across a plethora of applications intent on using these data to build context awareness. Specifically, we empirically demonstrate that decoupling a subscription from the changing context in which it is produced and leveraging contextual scoping in the filtering process notably reduces (un)subscription cost per node, while improving the global performance/throughput of the network of brokers without fltering the cost of SIENA-like topology changes.
Resumo:
A coarse-grained model for protein-folding dynamics is introduced based on a discretized representation of torsional modes. The model, based on the Ramachandran map of the local torsional potential surface and the class (hydrophobic/polar/neutral) of each residue, recognizes patterns of both torsional conformations and hydrophobic-polar contacts, with tolerance for imperfect patterns. It incorporates empirical rates for formation of secondary and tertiary structure. The method yields a topological representation of the evolving local torsional configuration of the folding protein, modulo the basins of the Ramachandran map. The folding process is modeled as a sequence of transitions from one contact pattern to another, as the torsional patterns evolve. We test the model by applying it to the folding process of bovine pancreatic trypsin inhibitor, obtaining a kinetic description of the transitions between the contact patterns visited by the protein along the dominant folding pathway. The kinetics and detailed balance make it possible to invert the result to obtain a coarse topographic description of the potential energy surface along the dominant folding pathway, in effect to go backward or forward between a topological representation of the chain conformation and a topographical description of the potential energy surface governing the folding process. As a result, the strong structure-seeking character of bovine pancreatic trypsin inhibitor and the principal features of its folding pathway are reproduced in a reasonably quantitative way.
Resumo:
This paper decomposes the conventional measure of selection bias in observational studies into three components. The first two components are due to differences in the distributions of characteristics between participant and nonparticipant (comparison) group members: the first arises from differences in the supports, and the second from differences in densities over the region of common support. The third component arises from selection bias precisely defined. Using data from a recent social experiment, we find that the component due to selection bias, precisely defined, is smaller than the first two components. However, selection bias still represents a substantial fraction of the experimental impact estimate. The empirical performance of matching methods of program evaluation is also examined. We find that matching based on the propensity score eliminates some but not all of the measured selection bias, with the remaining bias still a substantial fraction of the estimated impact. We find that the support of the distribution of propensity scores for the comparison group is typically only a small portion of the support for the participant group. For values outside the common support, it is impossible to reliably estimate the effect of program participation using matching methods. If the impact of participation depends on the propensity score, as we find in our data, the failure of the common support condition severely limits matching compared with random assignment as an evaluation estimator.
Resumo:
Two potential outcomes of a coevolutionary interaction are an escalating arms race and stable cycling. The general expectation has been that arms races predominate in cases of polygenic inheritance of resistance traits and permanent cycling predominates in cases in which resistance is controlled by major genes. In the interaction between Depressaria pastinacella, the parsnip webworm, and Pastinaca sativa, the wild parsnip, traits for plant resistance to insect herbivory (production of defensive furanocoumarins) as well as traits for herbivore “virulence” (ability to metabolize furanocoumarins) are characterized by continuous heritable variation. Furanocoumarin production in plants and rates of metabolism in insects were compared among four midwestern populations; these traits then were classified into four clusters describing multitrait phenotypes occurring in all or most of the populations. When the frequency of plant phenotypes belonging to each of the clusters is compared with the frequency of the insect phenotypes in each of the clusters across populations, a remarkable degree of frequency matching is revealed in three of the populations. That frequencies of phenotypes vary among populations is consistent with the fact that spatial variation occurs in the temporal cycling of phenotypes; such processes contribute in generating a geographic mosaic in this coevolutionary interaction on the landscape scale. Comparisons of contemporary plant phenotype distributions with phenotypes of herbarium specimens collected 9–125 years ago from across a similar latitudinal gradient, however, suggest that for at least one resistance trait—sphondin concentration—interactions with webworms have led to escalatory change.
Resumo:
Molecular and fragment ion data of intact 8- to 43-kDa proteins from electrospray Fourier-transform tandem mass spectrometry are matched against the corresponding data in sequence data bases. Extending the sequence tag concept of Mann and Wilm for matching peptides, a partial amino acid sequence in the unknown is first identified from the mass differences of a series of fragment ions, and the mass position of this sequence is defined from molecular weight and the fragment ion masses. For three studied proteins, a single sequence tag retrieved only the correct protein from the data base; a fourth protein required the input of two sequence tags. However, three of the data base proteins differed by having an extra methionine or by missing an acetyl or heme substitution. The positions of these modifications in the protein examined were greatly restricted by the mass differences of its molecular and fragment ions versus those of the data base. To characterize the primary structure of an unknown represented in the data base, this method is fast and specific and does not require prior enzymatic or chemical degradation.