964 resultados para Stendhal, Renate , 1944-
Resumo:
The object of this series of papers has been given in Part 1 (see Additional informations for details) which deals with the first known commercial fishery on the Wadge Bank from 1928 to 1935. There is no recorded trawling on the Bank between 1936 and 1944. This paper deals with the changes in the total catch (i.e. all species combined) per hour of trawling in relation to the changes in fishing intensity from 1945, when the present trawling activities started, to 1960. The effect of trawling on individual categories or varieties will be presented later.
Resumo:
Very few records of freshwater molluscs of Ceylon are available in several publications and although they are of importance as food for fishes and vectors of parasites we know little of their role in these capacities in Ceylon. The present paper is to be considered more as a pointer to the group than as a study of the freshwater molluscs of Ceylon. The author collected freshwater molluscs during surveys made for the study of systematics and distribution of various freshwater invertebrates. Material of freshwater molluscs purchased by the Museum in Leiden and labelled Ceylon was also seen by the author. The nomenclature used in this paper has been simplified by the omission of sub-generic and sub-specific names. The sub-generic divisions are dealt with critically for the Gastropoda by Wenz (1938-1944) and Zilch (1959-1960).
Resumo:
We employ a new solution-based coating process, centrifuge coating, to fabricate nanostructured conductive layers over large areas. This coating procedure allows fast quenching of the metastable dispersed state of nanomaterials, which minimizes material wastes by mitigate the effects of particle re-aggregation. Using this method, we fabricate SWNT coatings on different substrates such as PET (polyethylene terephthalate), PDMS (polydimethylsiloxane), and an acrylic elastomer. The effects of the choice of solvents on the morphology and subsequent performance of the coating network are studied. © 2012 IEEE.
Resumo:
Non-covalent functionalization of CoMoCAT single-wall carbon nanotubes (SWNTs) by bovine serum albumin (BSA) was achieved. Photoluminescence spectra for the functionalized nanotubes showed good dispersion by BSA functionalization. Raman spectra were taken for the sonicated SWNT-BSA solution to establish the signal versus concentration correlation. Cellular uptake of functionalized carbon nanotubes by mouse macrophage (RAW264.7) was then investigated using Raman spectroscopy. For a seeding density of 50% confluence in a culture solution containing 10 μg/ml of BSA-SWNTs, uptake of 200 μg/ml by the macrophages was recorded after 23hr incubation, indicating an active uptake of SWNTs. © 2012 IEEE.
Resumo:
We report the use of near-field electrospinning (NFES) as a route to fabricate composite electrodes. Electrodes made of composite fibers of carbon nanotubes in polyethylene oxide (PEO) are formed via liquid deposition, with precise control over their configuration. The electromechanical properties of free-standing fibers and fibers deposited on elastic substrates are studied in detail. We then examine the elastic deformation limit of the resulting free-standing fibers and find, similarly to bulk PEO composites, that the plastic deformation onset is below 2% of tensile strain. In comparison, the apparent deformation limit is much improved when the fibers are integrated onto a stretchable, elastic substrate. It is hoped that the NFES fabrication protocol presented here can provide a platform to direct-write polymeric electrodes, and to integrate both stiff and soft electrodes onto a variety of polymeric substrates. © 2012 IEEE.
Resumo:
Carbon nanotube is one of the promising materials for exploring new concepts in solar energy conversion and photon detection. Here, we report the first experimental realization of a single core/shell nanowire photovoltaic device (2-4μm) based on carbon nanotube and amorphous silicon. Specifically, a multi-walled carbon nanotube (MWNTs) was utilized as the metallic core, on which n-type and intrinsic amorphous silicon layers were coated. A Schottky junction was formed by sputtering a transparent conducting indium-tin-oxide layer to wrap the outer shell of the device. The single coaxial nanowire device showed typical diode ratifying properties with turn-on voltage around 1V and a rectification ratio of 104 when biased at ±2V. Under illumination, it gave an open circuit voltage of ∼0.26V. Our study has shown a simple and useful platform for gaining insight into nanowire charge transport and collection properties. Fundamental studies of such nanowire device are important for improving the efficiency of future nanowire solar cells or photo detectors. © 2012 IEEE.
Resumo:
采用复合垂直流人工湿地处理武汉东湖污染水的中试结果表明 ,出水中NH+ 4-N、NO- 2 -N和凯氏氮 (KN)浓度均显著降低 ,而NO- 3-N含量有所上升 ;系统最佳运行水力负荷为 80 0mm/d ,超过此负荷后系统净化效果随负荷增加而下降 ;在东湖现有的污染负荷下 ,处理系统仍呈现出继续承载污染量的潜力 ;就基质中KN的分布而言 ,水平方向为下行流池含量高于上行流池 ,垂直方向为上层 >中层 >下层 ,而在植物体内的分布则为叶片中含量最高。
Resumo:
In the domain of energy storage, electrochemical capacitors have numerous applications ranging from hybrid vehicles to consumer electronics, with very high power density at the cost of relatively low energy storage. Here, we report an approach that uses vertically aligned carbon nanotube arrays as electrodes in electrochemical capacitors. Different electrolytes were used and multiple parameters of carbon nanotube array were compared: carbon nanotube arrays were shown to be two to three times better than graphite in term of specific capacitance, while the surface functionalization was demonstrated to be a critical factor in both aqueous and nonaqueous solutions to increase the specific capacitance. We found that a maximum energy density of 21 Wh/kg at a power density of 1.1 kW/kg for a hydrophilic electrode, could be easily achieved by using tetraethylammonium tetrafluoroborate in propylene carbonate. These are encouraging results in the path of energy-storage devices with both high energy density and power density, using only carbon-based materials for the electrodes with a very long lifetime, of tens of thousands of cycles. © 2011 IEEE.
Resumo:
Ferroelectric thin films have been intensively studied at the nanometre scale due to the application in many fields, such as non-volatile memories. Enhanced piezo-response force microscopy (E-PFM) was used to investigate the evolution of ferroelectric and ferroelastic nanodomains in a polycrystalline thin film of the simple multi-ferroic PbZr0.3Ti0.7O 3 (PZT). By applying a d.c. voltage between the atomic force microscopy (AFM) tip and the bottom substrate of the sample, we created an electric field to switch the domain orientation. Reversible switching of both ferroelectric and ferroelastic domains towards particular directions with predominantly (111) domain orientations are observed. We also showed that along with the ferroelectric/ferroelastic domain switch, there are defects that also switch. Finally, we proposed the possible explanation of this controllable defect in terms of flexoelectricity and defect pinning. © 2013 IEEE.
Resumo:
Self-switching diodes have been fabricated within a single layer of indium-gallium zinc oxide (IGZO). Current-voltage (I-V) measurements show the nanometer-scale asymmetric device gave a diode-like response. Full current rectification was achieved using very narrow channel widths of 50nm, with a turn-on voltage, Von, of 2.2V. The device did not breakdown within the -10V bias range measured. This single diode produced a current of 0.1μA at 10V and a reverse current of less than 0.1nA at -10V. Also by adjusting the channel width for these devices, Von could be altered; however, the effectiveness of the rectification also changed. © 2013 IEEE.
Resumo:
该文基于可验证秘密共享思想和对Zheng的签密方案的必要修改,首次构造了一种不需要可信中心的门限签密方案.它能同时达到门限签名和加密的双重目的,实现代价仅和门限签名相当,并具有非否认性质.该文对当前一些分布式密钥分配协议做了分析,并基于Naor的基本思想,重点利用签密方案设计了协议SC—DKDS.与其它协议相比,该协议在减低实现成本等方面更为有效,因为它不需要认证信道、秘密信道及复杂的零知识证明等.该文还在RO(Random Oracle,随机预言)模型中给出了以上协议的安全性证明.