956 resultados para Stabilization of looking
Resumo:
Microemulsions (MEs) are thermodynamically stable systems consisting of nanosized droplets dispersed in a solvent continuous medium (known as pseudo-phase), which is immiscible with the dispersed phase. These systems consist of water, a hydrophobic solvent called "oil," an amphiphile and often, a co-surfactant that is normally a medium chain alcohol. A large number of publications describe the importance of MEs in many branches of chemistry, and there is an intensive search for new applications. In addition, MEs have been applied in many areas, including oil extraction, removal of environmental pollutants from soils and effluents, dissolution of additives in lubricants and cutting oils, cleaning processes, dyeing and textile finishing, as nanoreactors to obtain nanoparticles of metals, semiconductors, superconductors, magnetic and photographic materials, and latex. However, only some studies indicate the potential applications of MEs in food and even fewer evaluate their chemical behavior. Potential applications of MEs in food comprise dissolution of lipophilic additives, stabilization of nutrients and biologically active compounds, using as an antimicrobial agent and to maximize the efficiency of food preservatives. This work consists of a literature review focusing on composition and physical and chemical characteristics of microemulsions. Despite the small number of studies on the subject reported in the literature, we demonstrate some potential applications of MEs in food chemistry.
Resumo:
Asphaltenes are blamed for various problems in the petroleum industry, especially formation of solid deposits and stabilization of water-in-oil emulsions. Many studies have been conducted to characterize chemical structures of asphaltenes and assess their phase behavior in crude oil or in model-systems of asphaltenes extracted from oil or asphaltic residues from refineries. However, due to the diversity and complexity of these structures, there is still much to be investigated. In this study, asphaltene (sub)fractions were extracted from an asphaltic residue (AR02), characterized by NMR, elemental analysis, X-ray fluorescence and MS-TOF, and compared to asphaltene subfractions obtained from another asphaltic residue (AR01) described in a previous article. The (sub)fractions obtained from the two residues were used to prepare model-systems containing 1 wt% of asphaltenes in toluene and their phase behavior was evaluated by measuring asphaltene precipitation onset using optical microscopy. The results obtained indicated minor differences between the asphaltene fractions obtained from the asphaltic residues of distinct origins, with respect to aromaticity, elemental composition (CHN), presence and content of heteroelements and average molar mass. Regarding stability, minor differences in molecule polarity appear to promote major differences in the phase behavior of each of the asphaltene fractions isolated.
Resumo:
In this work, a theoretical study on the basis of structural, vibrational, electronic and topological parameters of the C2H2‧‧‧(HF), C2H2‧‧‧2(HF) and C2H2‧‧‧3(HF) complexes concerning the formation of π‧‧‧H, F‧‧‧H and C‧‧‧H hydrogen bonds is presented. The main difference among these complexes is not properly the interaction strength, but the hydrogen bond type whose benchmark is ruled justly by the structure. Meanwhile, the occurrence of π‧‧‧H hydrogen bonds was unveiled in both C2H2‧‧‧(HF) dimer and C2H2‧‧‧3(HF) tetramer, although in latter, this interaction is stronger than C‧‧‧H of the C2H2‧‧‧2(HF) trimer. However, the F‧‧‧H hydrogen bonds within the subunits of hydrofluoric acid are the strongest ones, reaching a partial covalent limit, and thereby contribute decisively to the stabilization of the tetramer structure. In line with this, the largest red-shifts were observed on the hydrofluoric acid trimer of the C2H2‧‧‧3(HF) complex.
Resumo:
The effect of water molecules on the conductivity and electrochemical properties of vanadium pentoxide xerogel was studied in connection with changes of morphology upon thermal annealing at different temperatures. It was demonstrated that the conductivity was increased for the samples heated at 150ºC and 270ºC compared to the vanadium pentoxide xerogel. It was also verified a stabilization of electrochemical processes of the insertion and de-insertion of lithium ions the structure of thermally annealed vanadium pentoxide.
Resumo:
Electrochemical double-layer supercapacitors have an intermediate position between rechargeable batteries, which can store high amounts of energy, and dielectric capacitors, which have high output power. Supercapacitors are widely suggested to be used in automobiles (recuperation during braking, facilitate engine starting, electric stabilization of the system), industry (forklifts, elevators), hybrid off-road machinery and also in consumer electronics. Supercapacitor electrodes require highly porous material. Typically, activated carbon is used. Specific surface area of activated carbon is approximately 1000 m2 per gram. Carbon nanotubes represent one of prospective materials. According to numerous studies this material allows to improve the properties of supercapacitors. The task of this Master‘s Thesis was to test multiwalled carbon nanotubes and become confident with the testing methods.
Resumo:
Changes in the polyamine content were analyzed in different embryo developmental stages and tissues during seed development in the conifer Araucaria angustifolia (Bert.) O. Ktze. Free polyamine contents varied according to the tissue and stage of embryo development, the highest levels occurring in the embryonic axis at the early stages, when putrescine and spermidine were most abundant. The levels of spermidine were higher from the stage where cotyledons arise, whereas putrescine decreases. The putrescine/spermine+spermidine ratio was higher during the initial phases of seed development, corresponding to cell multiplication and elongation, with a decrease in the final stages, corresponding to stabilization of the dry matter content.
Resumo:
In this work emission, optical, electrical and magnetic properties of the d- and f- elements doped zinc selenide crystals were investigated within a wide temperature range. Doping was performed in various technological processes: during the growth by chemical vapor transport method; by thermal diffusion from the Bi or Zn melt. Concentration of the doping impurity in the crystals was controlled by amount of the dopant in the source material or by its concentration in the doping media. Special interest in the work was paid to the influence of the different concentrations of Cr and Yb impurities on ZnSe crystals’ properties, correlations between observed effects and similarities with the Ni, Mn and Gd dopants are analysed. Possibility of formation of the excitons bound to the doping d-ions was shown. In contrast to this, it was observed that f-elements do not bound excitons, but prevent formation of excitons bound to some uncontrolled impurities. A mechanism of Cr doping impurity interaction with background impurities and zinc selenide structural defects was proposed based on experimental data. An assumption about resonant energy transfer between double charged chromium ions and complexes based on crystals’ vacancy defects was made. A correlation between emission and magnetic properties of the d- ions doped samples was established. Based on this correlation a mechanism explaining the concentration quench of the emission was proposed. It was found that f-ions bind electrically active shallow and deep donor and acceptor states of background impurity to electrically neutral complexes. This may be observed as “purification” of ZnSe crystals by doping with the rare-earth elements, resulting i tendency of the properties of f-ion doped crystals to the properties of intrinsic crystals, but with smaller concentration of uncontrolled native and impurity defects. A possible interpretation of this effect was proposed. It was shown that selenium substituting impurities decrease efficiency of the Yb doping. Based on this experimental results an attempt to determine ytterbium ion surroundings in the crystal lattice was made. It was shown that co-doping of zinc selenide crystals with the d- and f- ions leads to the combination of the impurities influence on the material’s properties. On the basis of obtained data an interaction mechanism of the d- and f-elements co-dopants was proposed. Guided by the model of the ytterbium ion incorporation in the selenide sublattice of the ZnSe crystals, an assumption about stabilization of single charged chromium ions in the zinc sublattice crystal nodes, by means of formation of the local charge compensating clusters, was made.
Resumo:
Tässä kandidaatintyössä selvitettiin, onko 28 vuorokautta riittävä aika sinkillä pilaantuneen maaperän massastabilointiin, ja kuinka sinkin esiintymismuoto vaikuttaa sen stabilointiaikaan. Kokeellisessa osassa jäljiteltiin malmijätteessä, orgaanisessa aineksessa sekä liuenneena maaperässä esiintyvän sinkin stabiloitumista lisäämällä maanäytteeseen sinkkiä eri yhdisteinä; sinkkirakeina, -kloridina ja -asetaattina. Näytteet stabiloitiin sementti-lentotuhkaseoksella 1–28 vuorokauden pituisia ajanjaksoja, minkä jälkeen ne kuvattiin pyyhkäisyelektronimikroskoopilla (SEM) ja niille tehtiin liukoisuustestit. Liukoisuustestien tuloksista voidaan huomata sinkkikloridin stabiloituvan jo ensimmäisen vuorokauden aikana ja pysyvän samalla tasolla koko tarkasteluajan. Sinkkirakeiden ja -asetaatin stabiloituminen ei ole yhtä tasaista; alun sitoutumisen jälkeen niiden liukoisuuksissa on havaittavissa selkeät piikit 21 vuorokauden kohdalla. Tämän jälkeen ne alkavat sitoutua uudelleen. Tulosten perusteella sinkin esiintymismuoto vaikuttaa sen stabilointiaikaan, eikä 28:aa vuorokautta voida pitää riittävänä aikana sinkillä pilaantuneen maa-aineksen stabilointiin. Vaikka liukoinen sinkki stabiloituu jo yhdessä vuorokaudessa, ei malmijätteessä tai orgaanisessa aineksessa esiintyvä sinkki ehdi stabiloitua vakaalle tasolle vielä 28 vuorokaudenkaan aikana. Tämä tulisi ottaa huomioon suunniteltaessa ja toteutettaessa sinkkiä sisältävien maiden kunnostushankkeita.
Resumo:
Occupational therapy (OT) is a profession concerned with promoting health and well-being through occupation, by enabling handicapped people to participate in the activities of everyday life. OT is part of the clinical rehabilitation of progressive genetic neurodegenerative diseases such as spinocerebellar ataxias; however, its effects have never been determined in these diseases. Our aim was to investigate the effect of OT on both physical disabilities and depressive symptoms of spinocerebellar ataxia type 3 (SCA3) patients. Genomically diagnosed SCA3 patients older than 18 years were invited to participate in the study. Disability, as evaluated by functional independence measurement and Barthel incapacitation score, Hamilton Rating Scale for Depression, and World Health Organization Quality of Life questionnaire (WHOQOL-BREF), was determined at baseline and after 3 and 6 months of treatment. Twenty-six patients agreed to participate in the study. All were treated because OT prevents blinding of a control group. Fifteen sessions of rehabilitative OT were applied over a period of 6 months. Difficult access to food, clothing, personal hygiene, and leisure were some of the main disabilities focused by these patients. After this treatment, disability scores and quality of life were stable, and the Hamilton scores for depression improved. Since no medication was started up to 6 months before or during OT, this improvement was related to our intervention. No association was found between these endpoints and a CAG tract of the MJD1 gene (CAGn), age, age of onset, or neurological scores at baseline (Spearman test). Although the possibly temporary stabilization of the downhill disabilities as an effect of OT remains to be established, its clear effect on depressive symptoms confirms the recommendation of OT to any patient with SCA3 or spinocerebellar ataxia.
Resumo:
White matter injury characterized by damage to myelin is an important process in hypoxic-ischemic brain damage (HIBD). Because the oligodendrocyte-specific isoform of neurofascin, neurofascin 155 (NF155), and its association with lipid rafts are essential for the establishment and stabilization of the paranodal junction, which is required for tight interaction between myelin and axons, we analyzed the effect of monosialotetrahexosyl ganglioside (GM1) on NF155 expression and its association with lipid rafts after HIBD in Sprague-Dawley rats, weighing 12-15 g, on day 7 post-partum (P7; N = 20 per group). HIBD was induced on P7 and the rats were divided into two groups: one group received an intraperitoneal injection of 50 mg/kg GM1 three times and the other group an injection of saline. There was also a group of 20 sham-operated rats. After sacrifice, the brains of the rats were removed on P30 and studied by immunochemistry, SDS-PAGE, Western blot analysis, and electron microscopy. Staining showed that the saline group had definite rarefaction and fragmentation of brain myelin sheaths, whereas the GM1 group had no obvious structural changes. The GM1 group had 1.9-2.9-fold more GM1 in lipid rafts than the saline group (fraction 3-6; all P < 0.05) and 0.5-2.4-fold higher expression of NF155 in lipid rafts (fraction 3-5; all P < 0.05). Injection of GM1 increased the content of GM1 in lipid rafts as well as NF155 expression and its lipid raft association in HIBD rat brains. GM1 may repair the structure of lipid rafts, promote the association of NF155 (or other important proteins) with lipid rafts, stabilize the structure of paranodes, and eventually prevent myelin sheath damage, suggesting a novel mechanism for its neuroprotective properties.
Resumo:
Most drugs function by binding reversibly to specific biological targets, and therapeutic effects generally require saturation of these targets. One means of decreasing required drug concentrations is incorporation of reactive metal centers that elicit irreversible modification of targets. A common approach has been the design of artificial proteases/nucleases containing metal centers capable of hydrolyzing targeted proteins or nucleic acids. However, these hydrolytic catalysts typically provide relatively low rate constants for target inactivation. Recently, various catalysts were synthesized that use oxidative mechanisms to selectively cleave/inactivate therapeutic targets, including HIV RRE RNA or angiotensin converting enzyme (ACE). These oxidative mechanisms, which typically involve reactive oxygen species (ROS), provide access to comparatively high rate constants for target inactivation. Target-binding affinity, co-reactant selectivity, reduction potential, coordination unsaturation, ROS products (metal-associated vsmetal-dissociated; hydroxyl vs superoxide), and multiple-turnover redox chemistry were studied for each catalyst, and these parameters were related to the efficiency, selectivity, and mechanism(s) of inactivation/cleavage of the corresponding target for each catalyst. Important factors for future oxidative catalyst development are 1) positioning of catalyst reduction potential and redox reactivity to match the physiological environment of use, 2) maintenance of catalyst stability by use of chelates with either high denticity or other means of stabilization, such as the square planar geometric stabilization of Ni- and Cu-ATCUN complexes, 3) optimal rate of inactivation of targets relative to the rate of generation of diffusible ROS, 4) targeting and linker domains that afford better control of catalyst orientation, and 5) general bio-availability and drug delivery requirements.
Resumo:
Tässä kanditaatintyössä selvitettiin kuinka erilaiset sideaineseokset soveltuvat raskas-metallien sitomiseen 28 vuorokautta stabiloiduissa näytteistä. Työssä oletettiin teollisten jätefraktioiden käytön tehostavan eräiden metallien, kuten kupari ja sinkki, immobilisointia lievästi pilaantuneista maa-aineksista. Kokeellisessa osassa stabiloitiin Kokkolan satamasta ruopattua sedimenttiä, jonka sinkkipitoisuudet olivat ylittäneet saastuneen sedimentin ohjearvon (≥400 mg/kg). Sedimenttiin lisättiin eri sideaineseoksia ja näytteiden annettiin stabiloitua 28 vuorokautta, minkä jälkeen niistä testattiin liukenevat raskasmetallit muokatulla ravistelutestillä. Eri sideaineseoksilla saatuja tuloksia verrattiin pelkän yleissementin käyttöön. Lisäksi erillisistä näytteistä otettiin pyyhkäisyelektronimikros-koopilla (SEM) kuvia havainnollistamaan stabiloitumista. Näissä näytteissä käytettiin samoja sideaineita kuin tehdyissä kokeissa. Liukoisuustestien tuloksista voidaan huomata näytteissä ongelmalliseksi raskasmetalliksi identifioidun sinkin sitoutuvan parhaiten sementin ja kipsin sekoituksella. Myös tuhkaa sisältävät sideainesekoitukset pienensivät sinkin liukoisuutta verrattuna pelkkään yleis-sementtiin. Jatkotutkimuksissa voitaisiin testata erilaisia sideainesekoituksia betonira-kentamisessa, joilla saadaan ainakin 25 MPa lujuusarvo, pilaantunutta sedimenttiä tai maa-ainesta käyttäen.
Resumo:
Molecular oxygen (O2) is a key component in cellular respiration and aerobic life. Through the redox potential of O2, the amount of free energy available to organisms that utilize it is greatly increased. Yet, due to the nature of the O2 electron configuration, it is non-reactive to most organic molecules in the ground state. For O2 to react with most organic compounds it must be activated. By activating O2, oxygenases can catalyze reactions involving oxygen incorporation into organic compounds. The oxygen activation mechanisms employed by many oxygenases to have been studied, and they often include transition metals and selected organic compounds. Despite the diversity of mechanisms for O2 activation explored in this thesis, all of the monooxygenases studied in the experimental part activate O2 through a transient carbanion intermediate. One of these enzymes is the small cofactorless monooxygenase SnoaB. Cofactorless monooxygenases are unusual oxygenases that require neither transition metals nor cofactors to activate oxygen. Based on our biochemical characterization and the crystal structure of this enzyme, the mechanism most likely employed by SnoaB relies on a carbanion intermediate to activate oxygen, which is consistent with the proposed substrate-assisted mechanism for this family of enzymes. From the studies conducted on the two-component system AlnT and AlnH, both the functions of the NADH-dependent flavin reductase, AlnH, and the reduced flavin dependent monooxygenase, AlnT, were confirmed. The unusual regiochemistry proposed for AlnT was also confirmed on the basis of the structure of a reaction product. The mechanism of AlnT, as with other flavin-dependent monooxygenases, is likely to involve a caged radical pair consisting of a superoxide anion and a neutral flavin radical formed from an initial carbanion intermediate. In the studies concerning the engineering of the S-adenosyl-L-methionine (SAM) dependent 4-O-methylase DnrK and the homologous atypical 10-hydroxylase RdmB, our data suggest that an initial decarboxylation of the substrate is catalyzed by both of these enzymes, which results in the generation of a carbanion intermediate. This intermediate is not essential for the 4-O-methylation reaction, but it is important for the 10-hydroxylation reaction, since it enables substrate-assisted activation of molecular oxygen involving a single electron transfer to O2 from a carbanion intermediate. The only role for SAM in the hydroxylation reaction is likely to be stabilization of the carbanion through the positive charge of the cofactor. Based on the DnrK variant crystal structure and the characterizations of several DnrK variants, the insertion of a single amino acid in DnrK (S297) is sufficient for gaining a hydroxylation function, which is likely caused by carbanion stabilization through active site solvent restriction. Despite large differences in the three-dimensional structures of the oxygenases and the potential for multiple oxygen activation mechanisms, all the enzymes in my studies rely on carbanion intermediates to activate oxygen from either flavins or their substrates. This thesis provides interesting examples of divergent evolution and the prevalence of carbanion intermediates within polyketide biosynthesis. This mechanism appears to be recurrent in aromatic polyketide biosynthesis and may reflect the acidic nature of these compounds, propensity towards hydrogen bonding and their ability to delocalize π-electrons.
Resumo:
The signalling sphingolipid sphingosine-1-phosphate (S1P) is necessary for development of the immune system and vasculature and on a cellular level regulates migration, proliferation and survival. Due to these traits S1P has an important role in cancer biology. It is considered a primarily cancer-promoting factor and the enzyme which produces it, sphingosine kinase (SphK), is often over-expressed in tumours. S1P is naturally present in the blood, lymph, tissue fluids and cell cytoplasm and functions through its cell surface receptors (S1P1-5) and as an intracellular second messenger. Sphingosylphosphorylcholine (SPC) is closely related to S1P and has similar regulatory functions but has not been extensively studied. Both S1P and SPC are able to evoke either stimulatory or inhibitory effects on cancer cells depending on the context. The aim of this thesis work was to study novel regulatory targets of S1P and SPC, which mediate the effects of S1P/SPC signalling on cancer cell behaviour. The investigated targets are the transcription factor hypoxia-inducible factor 1 (HIF-1), the intermediate filament protein vimentin and components of the Hippo signalling pathway. HIF-1 has a central role in cancer biology, as it regulates a multitude of cancer-related genes and is potently activated by intratumoural hypoxia through stabilization of the regulatory subunit HIF-1α. Tumours typically harbour high HIF-1α levels and HIF-1, in turn, facilitates tumour angiogenesis and metastasis and regulates cancer cell metabolism. We found S1P to induce follicular thyroid cancer cell migration in normal oxygen conditions by increasing HIF-1α synthesis and stability and subsequently HIF-1 activity. Vimentin is a central regulator of cell motility and is also commonly over-expressed in cancers. Vimentin filaments form a cytoskeletal network in mesenchymal cells as well as epithelial cancer cells which have gone through epithelial-mesenchymal transition (EMT). Vimentin is heavily involved in cancer cell invasion and gives tumours metastatic potential. We saw both S1P and SPC induce phosphorylation of vimentin monomers and reorganization of the vimentin filament network in breast and anaplastic thyroid cancer cells. We also found vimentin to mediate the anti-migratory effect of S1P/SPC on these cells. The Hippo pathway is a novel signalling cascade which controls cancer-related processes such as cellular proliferation and survival in response to various extracellular signals. The core of the pathway consists of the transcriptional regulators YAP and TAZ, which activate predominantly cancer-promoting genes, and the tumour suppressive kinases Lats1 and Lats2 which inhibit YAP/TAZ. Increased YAP expression and activity has been reported for a wide variety of cancers. We found SPC to regulate Hippo signalling in breast cancer cells in a two-fold manner through effects on phosphorylation status, activity and/or expression of YAP and Lats2. In conclusion, this thesis reveals new details of the signalling function of S1P and SPC and regulation of the central oncogenic factors HIF-1 and vimentin as well as the novel cancer-related pathway Hippo.
Resumo:
Attendue, débattue, décriée … l’impulsion française de ces dernières années tendant à faire du salarié un acteur à part entière de l’entreprise interpelle. En effet, le microcosme de la firme s’en trouve bouleversé et l’évidence d’une réalité sociale condamnée à évoluer pose la nécessité de rechercher un nouvel équilibre. Reste à disséquer les implications de cette tendance récente, à en comprendre les fondements et à en mesurer les enjeux. Le dispositif juridique français est animé d’une préoccupation qui ne cesse de prendre de l’ampleur depuis la fin des années 2000 : faire du salarié un partenaire impliqué dans la vie de l’entreprise. L’étude de cette perception innovante d’une gouvernance axée sur la collaboration des salariés ne peut être menée sans appréhender les travaux de l’OCDE qui, dans ses Principes de gouvernement d’entreprise, fournit une grille d’analyse complète. En conséquence, le droit s’inscrit en droite ligne des nombreux écrits d’autres disciplines prônant une implication croissante des employés. Toutefois, l’accélération de la prise en compte des salariés dont témoignent les textes récemment adoptés en France rend complexe la synthèse de ce phénomène.