925 resultados para Stability in organic solvents
Resumo:
Aluminum toxicity is one of the major soil factors limiting root growth in acidic soils. Because of the increase in organic matter content in the upper few centimeters of soils under no-till systems (NTS), most Al in soil solution may be complexed to dissolved organic C (DOC), thus decreasing its bioavailability. The aim of this study was to evaluate the effects of surface liming on Al speciation in soil solution in Brazilian sites under NTS. Field experiments were performed in two regions with contrasting climates and levels of soil acidity: Rondonopolis, Mato Grosso State, on a Rhodic Haplustox, and Ponta Grossa, Parana State, on a Typic Hapludox. The treatments consisted of a control and three lime rates, surface applied to raise the base saturation to 50, 70, and 90%. Soil solution was obtained at soil water equilibrium (1:1 w/w soil/water ratio). The effects of surface liming on soil chemical attributes and on the composition of the soil solution were dependent on weather conditions, time under NTS, and soil weathering. Most Al in soil solution was complexed to DOC, representing about 70 to 80% of the total Al at pH <5.0, and about 30 to 4096 at pH >5.0. Under pH 5.5, the results were closely correlated with the solubility line for amorphous Al. Organic complexes may control Al(3+) release into soil solution at pH <5.5. Results suggest that in areas under NTS for a long period of time, Al toxicity might decrease due to its complexation to high-molecular-weight organic compounds.
Resumo:
Subtropical grasslands are low in organic matter digestibility (OMD) (0.60) and nitrogen (N) (15 g/kg) for much of the year and this limits cattle production which is characterized by low calving rates and low weaning weights. Production has been based on Bos taurus British breeds of cattle but this is changing and now many breeding herds comprise B, indicus cows and their crosses. This change has increased some aspects of production, but low calving rates persist. A 4-year study was undertaken with a view to improve calving rates and weaner output by supplementing cows grazing either native or improved pastures with a high protein oilseed meal (cottonseed meal; CSM) on four sites. These sites were subdivided into a total of 36 paddocks to allow for two replications in a 3 breeds X 3 supplementation rates X 2 pastures factorial design. Selected cows (no. = 216) from Hereford (H), Brahman (B) and Brahman X Hereford (BH) breed types were set to graze either native pastures (0.45 to 0.62 OMD, 8 to 15 g N per kg; low quality) or improved pastures (0.47 to 0.67 OA ID, 10 to 22 g N per kg; medium quality). Cows were given either 0, 750 or 1500 g/day of CSM for 130 days from calving until 4 weeks into a 12- to 13-week mating period. The CSM was given as two meals per week. Live weight at mating of cows on the low quality pasture was increased (P < 0.01) over those not supplemented by feeding either 750 g CSM per day (H and B cows) or 1500 g CSM per day tall cows). There was no significant effect of supplementation on the mating weights of B cows grazing the medium quality sites. Calving rate of B cows was not increased by their supplementation on either low (4-year mean 58.3 %) or medium quality pastures (66.8%) but did tend to be higher in H cows when supplemented at 1500 g CSM per day on the low (66.7 v. 78.0 (s.e. 6.09) %; P < 0.1) and medium quality pastures (70.5 v. 93.5 (s.e. 4.72) %). An increased calving rate (65.8 (s.e. 6.6) % to 83.2 (s.e. 5.82) % in supplemented BH cows grazing low quality pastures approached significance (P < 0.1) when given CSM at 1500 g/day but there was no increased trend in calving rate when this breed type was supplemented on medium quality pastures. Weaning weights of calves from and B and BH cows were increased (P < 0.05) by supplementation of their darns at 750 g/day and for calves weaned from H cows supplemented at 1500 g/day of CSM. Supplementation at 1500 g/day on low quality pastures increased weaner output per cow mated by 120% for H, by 65% for BH cows and by 50% for B cows. Weaner output was increased by 34 and 40%, respectively, for B and H cows when supplemented at 750 g/day and grazing medium quality pastures but there teas no significant effect of supplementation on output from BH cows. Responses in many parameters differed between years. These results were interpreted as a response to the protein in the oilseed meal supplement by B, taurus and B. taurus X B. indicus cross cows grazing on the subtropical pastures. The study also highlighted that responses to the meal differed between breed types, between the quality of the grazed pasture and between the years of supplementation.
Resumo:
1. The spatial and temporal distribution of eggs laid by herbivorous insects is a crucial component of herbivore population stability, as it influences overall mortality within the population. Thus an ecologist studying populations of an endangered butterfly can do little to increase its numbers through habitat management without knowledge of its egg-laying patterns across individual host-plants under different habitat management regimes. At the other end of the spectrum, a knowledge of egg-laying behaviour can do much to control pest outbreaks by disrupting egg distributions that lead to rapid population growth. 2. The distribution of egg batches of the processionary caterpillar Ochrogaster lunifer on acacia trees was monitored in 21 habitats during 2 years in coastal Australia. The presence of egg batches on acacias was affected by host-tree 'quality' (tree size and foliar chemistry that led to increased caterpillar survival) and host-tree 'apparency' (the amount of vegetation surrounding host-trees). 3. In open homogeneous habitats, more egg batches were laid on high-quality trees, increasing potential population growth. In diverse mixed-species habitats, more egg batches were laid on low-quality highly apparent trees, reducing population growth and so reducing the potential for unstable population dynamics. The aggregation of batches on small apparent trees in diverse habitats led to outbreaks on these trees year after year, even when population levels were low, while site-wide outbreaks were rare. 4. These results predict that diverse habitats with mixed plant species should increase insect aggregation and increase population stability. In contrast, in open disturbed habitats or in regular plantations, where egg batches are more evenly distributed across high-quality hosts, populations should be more unstable, with site-wide outbreaks and extinctions being more common. 5. Mixed planting should be used on habitat regeneration sites to increase the population stability of immigrating or reintroduced insect species. Mixed planting also increases the diversity of resources, leading to higher herbivore species richness. With regard to the conservation of single species, different practices of habitat management will need to be employed depending on whether a project is concerned with methods of rapidly increasing the abundance of an endangered insect or concerned with the maintenance of a stable, established insect population that is perhaps endemic to an area. Suggestions for habitat management in these different cases are discussed. 6. Finally, intercropping can be highly effective in reducing pest outbreaks, although the economic gains of reduced pest attack may be outweighed by reduced crop yields in mixed-crop systems.
Resumo:
The use of long-term forecasts of pest pressure is central to better pest management. We relate the Southern Oscillation Index (SOI) and the Sea Surface Temperature (SST) to long-term light-trap catches of the two key moth pests of Australian agriculture, Helicoverpa punctigera (Wallengren) and H. armigera (Hubner), at Narrabri, New South Wales over 11 years, and for H. punctigera only at Turretfield, South Australia over 22 years. At Narrabri, the size of the first spring generation of both species was significantly correlated with the SOI in certain months, sometimes up to 15 months before the date of trapping. Differences in the SOI and SST between significant months were used to build composite variables in multiple regressions which gave fitted values of the trap catches to less than 25% of the observed values. The regressions suggested that useful forecasts of both species could be made 6-15 months ahead. The influence of the two weather variables on trap catches of H. punctigera at Turretfield were not as strong as at Narrabri, probably because the SOI was not as strongly related to rainfall in southern Australia as it is in eastern Australia. The best fits were again given by multiple regressions with SOI plus SST variables, to within 40% of the observed values. The reliability of both variables as predictors of moth numbers may be limited by the lack of stability in the SOI-rainfall correlation over the historical record. As no other data set is available to test the regressions, they can only be tested by future use. The use of long-term forecasts in pest management is discussed, and preliminary analyses of other long sets of insect numbers suggest that the Southern Oscillation Index may be a useful predictor of insect numbers in other parts of the world.
Resumo:
Catalytic reforming of methane with carbon dioxide was studied in a fixed-bed reactor using unpromoted and promoted Ni/gamma-Al2O3 catalysts. The effects of promoters, such as alkali metal oxide (Na2O), alkaline-earth metal oxides (MgO, CaO) and rare-earth metal oxides (La2O3, CeO2), on the catalytic activity and stability in terms of coking resistance and coke reactivity were systematically examined. CaO-, La2O3- and CeO2-promoted Ni/gamma-Al2O3 catalysts exhibited higher stability whereas MgO- and Na2O-promoted catalysts demonstrated lower activity and significant deactivation. Metal-oxide promoters (Na2O, MgO, La2O3, and CeO2) suppressed the carbon deposition, primarily due to the enhanced basicities of the supports and highly reactive carbon species formed during the reaction. In contrast, CaO increased the carbon deposition; however, it promoted the carbon reactivity. (C) 2000 Society of Chemical Industry.
Resumo:
A glucoamylase from Aspergillus niveus was produced by submerged fermentation in Khanna medium, initial pH 6.5 for 72 h, at 40A degrees C. The enzyme was purified by DEAE-Fractogel and Concanavalin A-Sepharose chromatography. The enzyme showed 11% carbohydrate content, an isoelectric point of 3.8 and a molecular mass of 77 and 76 kDa estimated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis or Bio-Sil-Sec-400 gel filtration, respectively. The pH optimum was 5.0-5.5, and the enzyme remained stable for at least 2 h in the pH range of 4.0-9.5. The temperature optimum was 65A degrees C and retained 100% activity after 240 min at 60A degrees C. The glucoamylase remained completely active in the presence of 10% methanol and acetone. After 120 min hydrolysis of starch, glucose was the unique product formed, confirming that the enzyme was a glucoamylase (1,4-alpha-d-glucan glucohydrolase). The K (m) was calculated as 0.32 mg ml(-1). Circular dichroism spectroscopy estimated a secondary structure content of 33% alpha-helix, 17% beta-sheet and 50% random structure, which is similar to that observed in the crystal structures of glucoamylases from other Aspergillus species. The tryptic peptide sequence analysis showed similarity with glucoamylases from A. niger, A. kawachi, A. ficcum, A. terreus, A. awamori and A. shirousami. We conclude that the reported properties, such as solvent, pH and temperature stabilities, make A. niveus glucoamylase a potentially attractive enzyme for biotechnological applications.
Resumo:
Xylanases are enzymes that are very tolerant to temperature. Their potential use in several biotechnological applications, such as animal food manufacture and pulp bleaching, is due to their intrinsic thermostability. The present report deals with two xylanases, the mesophilic xylanase from Bacillus circulans, BCX, and the thermophilic xylanase from Thermomyces lanuginosus,TLX. These enzymes belong to family 11, and they are the most structurally similar mesophilic-thermophilic pair. Molecular dynamics simulations were employed to investigate the factors responsible for the different thermostabilities exhibited by these structurally similar enzymes. Their active site is their most rigid region, and it is equally rigid at all temperatures. Inter and intramolecular interactions, hydrogen bonds in particular, are the key to the main differences between BCX and TLX. The intramolecular hydrogen bonds and salt bridges are important for maintenance of the backbone rigidity even at high temperature, and the highly solvated surface is a clear optimization in TLX compared with BCX. The main differences between these two enzymes can be found on the fingers domain, which indicates that this domain must be the target for the site-directed mutagenesis responsible for improving the temperature tolerance of this family of enzymes.
Resumo:
The electrochemical degradation of different glyphosate herbicide formulations on RuO(2) and IrO(2) DSA(A (R)) electrodes is investigated. Parameters that could influence the formation of organochloride compounds during electrolysis are studied. The effects of chloride concentration, electrodic composition, current density, and electrolysis time are reported. The influence of the oxide composition on herbicide degradation seems to be almost insignificant; however, there is a straight relationship between anode composition and organic halides formation. Commercial herbicide formulations have lower degradation rates and lead to the formation of a larger quantities of organochloride compounds. In high chloride concentrations, there is a significant increase in organic mineralization, and the relationship between chloride concentration and organic halides formation is direct. Only in low chloride medium investigated the organochloride concentration obtained was below the limit values allowed in Brazil. The determination of organic halides absorbable (AOX) during electrolysis increases significantly with the applied current. Even during long-term electrolysis, a large amount of organochloride compounds is formed.
Resumo:
Magnetic field effects on the conductivity of different types of organic devices: undoped and dye doped aluminium (III) 8-hydroxyquinoline (Alq(3))-based organic light emitting diodes (OLEDs), electron-only Alq(3)-based diodes, and a hole-only N,N`-diphenyl-N,N`-bis(1-naphthyl)1,1`-biphenyl-4,4`-diamine (alpha-NPD)-based diode were studied at room temperature. Only negative magnetoresistance (MR) was observed for the Alq(3)-based devices. The addition of a rubrene dye in Alq(3)-based OLEDs quenches the MR by a factor of 5. The alpha-NPD hole-only device showed only positive MR. Our results are discussed with respect to the actual models for MR in organic semiconductors. Our results are in good agreement with the bipolaron model. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Objectives. The aim of this study was to evaluate the influence of monomer content on fracture toughness (K(Ic)) before and after ethanol solution storage, flexural properties and degree of conversion (DC) of bisphenol A glycidyl methacrylate (Bis-GMA) co-polymers. Methods. Five formulations were tested, containing Bis-GMA (B) combined with TEGDMA (T), UDMA (U) or Bis-EMA (E), as follows (in mol%): 30B:70T; 30B:35T:35U; 30B:70U; 30B:35T:35E; 30B:70E. Bimodal filler was introduced at 80 wt%. Single-edge notched beams for fracture toughness (FT, 25 mm x 5 mm x 2.5 mm, a/w = 0.5, n = 20) and 10 mm x 2 mm x 1 mm beams for flexural strength (FS) and modulus (FM) determination (10 mm x 2 mm x 1 mm, n = 10) were built and then stored in distilled water for 24 h at 37 degrees C. All FS/FM beams and half of the FT specimens were immediately submitted to three-point bending test. The remaining FT specimens were stored in a 75%ethanol/25%water (v/v) solution for 3 months prior to testing. DC was determined with FT-Raman spectroscopy in fragments of both FT and FS/FM specimens at 24 h. Data were submitted to one-way ANOVA/Tukey test (alpha = 5%). Results. The 30B:70T composite presented the highest K(Ic) value (in MPa m(1/2)) at 24 h (1.3 +/- 0.4), statistically similar to 30B:35T:35U and 30B:70U, while 30B:70E presented the lowest value (0.5 +/- 0.1). After ethanol storage, reductions in K(Ic) ranged from 33 to 72%. The 30B:70E material presented the lowest reduction in FT and 30B:70U, the highest. DC was similar among groups (69-73%), except for 30B:70U (52 +/- 4%, p < 0.001). 30B:70U and 30B:35T:35U presented the highest FS (125 +/- 21 and 122 +/- 14 MPa, respectively), statistically different from 30B:70T or 30B:70E (92 +/- 20 and 94 +/- 16 MPa, respectively). Composites containing UDMA or Bis-EMA associated with Bis-GMA presented similar FM, statistically lower than 30B:35T:35U. Significance. Composites formulated with Bis-GMA:TEGDMA:UDMA presented the best compromise between conversion and mechanical properties. (C) 2009 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Resumo:
Background Twin and family studies have shown that genetic effects explain a relatively high amount of the phenotypic variation in blood pressure. However, many studies have not been able to replicate findings of association between specific polymorphisms and diastolic and systolic blood pressure. Methods In a structural equation-modelling framework the authors investigated longitudinal changes in repeated measures of blood pressures in a sample of 298 like-sexed twin pairs from the population-based Swedish Twin Registry. Also examined was the association between blood pressure and polymorphisms in the angiotensin-I converting enzyme and the angiotensin 11 receptor type 1 with the 'Fulker' test Both linkage and association were tested simultaneously revealing whether the polymorphism is a Quantitative Trait Locus (QTL) or in linkage disequilibrium with the QTL. Results Genetic influences explained up to 46% of the phenotypic variance in diastolic and 63% of the phenotypic variance in systolic blood pressure. Genetic influences were stable over time and contributed up to 78% of the phenotypic correlation in both diastolic and systolic blood pressure. Non-shared environmental effects were characterised by time specific influences and little transmission from one time point to the next. There was no significant linkage and association between the polymorphisms and blood pressure. Conclusions There is a considerable genetic stability in both diastolic and systolic blood pressure for a 6-year period of time in adult life. Non-shared environmental influences have a small long-term effect Although associations with the polymorphisms could not be replicated, results should be interpreted with caution due to power considerations. (C) 2002 Lippincott Williams Wilkins.
Resumo:
Objective: To investigate the influence of age and preparation level on postural muscle activation and step completion time during a rapid step task. Design: Postural muscle onset times (EMG) and ground reaction forces were recorded from healthy young (n = 20, age 21 +/- 3 years) and older (n = 25, age 71 +/- 5 years) female adults during a choice reaction-time stepping paradigm. Main outcome measures: Onset times of six trunk and hip muscles, reaction time and components of the step (weight shift time, step time and task time) were recorded. Results: Muscle activation was delayed and movement time was lengthened in both young and older adults when poorly prepared for a stepping task. While reduced preparation did not influence older adults to a greater extent than young adults, the slowest step response and completion time was evident in older adults when poorly prepared to move. Conclusions: A late postural response when poorly prepared to move may be a contributing factor to an increased risk of overbalancing in older adults. Future assessment of and intervention to improve postural stability in older adults should be expanded to incorporate tasks performed at various levels of preparation.
Resumo:
An experimental study has been carried out to characterise the performance of polymer stabilisers, partially hydrolysed polyvinyl acetate (PVAc), used in suspension polymerisation processes. The stabilisers are ranked by their ability to stabilise the dispersion characterised by the median coalescence time of a single drop with its homophase at a planar liquid/liquid interface. Results show that the stability of the dispersion relates closely to the molecular properties of the PVAcs. Other conditions being equal, PVAcs with higher molecular weights or lower degrees of hydrolysis can better stabilise a liquid-liquid dispersion. The stability of the dispersion also depends strongly on where the PVAc resides. The presence of a PVAc in the dispersed phase significantly reduces stability. Consistent with results reported in the literature, considerable scatter has been observed on the coalescence times of identical drops under the same conditions. An explanation for the scatter is also proposed in the paper, based on the classical Reynolds model for film thinning. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Circular proteins are a recently discovered phenomenon. They presumably evolved to confer advantages over ancestral linear proteins while maintaining the intrinsic biological functions of those proteins. In general, these advantages include a reduced sensitivity to proteolytic cleavage and enhanced stability. In one remarkable family of circular proteins, the cyclotides, the cyclic backbone is additionally braced by a knotted arrangement of disulfide bonds that confers additional stability and topological complexity upon the family. This article describes the discovery, structure, function and biosynthesis of the currently known circular proteins. The discovery of naturally occurring circular proteins in the past few years has been complemented by new chemical and biochemical methods to make synthetic circular proteins; these are also briefly described.
Resumo:
Neste trabalho foi estudado o comportamento de quatro óleos pesados, com densidade API variando de 13,7 a 21,6, frente à adição de gás condensado, com o objetivo de se obter informações relevantes para o processo de escoamento destes óleos. Assim, foi analisado o comportamento da densidade à 20 °C, pontos de fluidez máximo e mínimo, e viscosidade dinâmica à 50 °C dos óleos contendo diferentes concentrações de gás condensado. Também foi analisado o efeito da variação da temperatura sobre a viscosidade dos óleos crus, e, adicionalmente, após o estudo do efeito do gás condensado sobre os óleos, foi avaliado o comportamento da viscosidade dinâmica dos mesmos com a adição de diferentes solventes orgânicos (querosene, aguarrás e tolueno). Os resultados obtidos indicaram que o gás condensado foi eficiente para a redução da densidade, dos pontos de fluidez máximo e mínimo e da viscosidade dos quatros óleos analisados. O óleo A apresentou uma taxa de decaimento da densidade mais baixa do que os outros óleos e foi o que apresentou o comportamento mais próximo de mistura ideal. A amostra de óleo mais pesada (óleo D) foi a que apresentou as maiores variações nos valores dos pontos de fluidez máximo e mínimo com a adição de condensado, chegando a reduzir um total de 19 °C no ponto de fluidez máximo e um total de 21 °C no ponto de fluidez mínimo com a adição de apenas 10,7% v/v de gás condensado. Nos resultados obtidos nas análises da viscosidade dinâmica observou-se que a grande maioria das misturas preparadas apresentou um comportamento de fluido newtoniano. Todas as amostras apresentaram uma notável diminuição da sua viscosidade, chegando a atingir valores percentuais de redução de viscosidade que variaram entre 75 e 91%, na concentração de 14% v/v de gás condensado. A partir desta concentração a viscosidade continua a decair, porém de forma mais atenuada, e o uso do condensado acima desta concentração pode significar gastos desnecessários com o solvente com a finalidade de se reduzir a viscosidade de óleos pesados. O óleo D foi o que apresentou os maiores percentuais de redução da viscosidade enquanto o óleo B foi o que apresentou os mais baixos valores. Comparando o gás condensado aos outros três solventes orgânicos testados, o condensado apresentou um comportamento bem semelhante ao tolueno quando analisadas as suas capacidades de redução da viscosidade dos óleos estudados.