926 resultados para Spinn-Crossover
Resumo:
Objective To describe simultaneous pharmacokinetics (PK) and thermal antinociception after intravenous (IV), intramuscular (IM) and subcutaneous (SC) buprenorphine in cats. Study design Randomized, prospective, blinded, three period crossover experiment. Animals Six healthy adult cats weighing 4.1±0.5kg. Methods Buprenorphine (0.02mgkg-1) was administered IV, IM or SC. Thermal threshold (TT) testing and blood collection were conducted simultaneously at baseline and at predetermined time points up to 24hours after administration. Buprenorphine plasma concentrations were determined by liquid chromatography tandem mass spectrometry. TT was analyzed using anova (p<0.05). A pharmacokinetic-pharmacodynamic (PK-PD) model of the IV data was described using a model combining biophase equilibration and receptor association-dissociation kinetics. Results TT increased above baseline from 15 to 480minutes and at 30 and 60minutes after IV and IM administration, respectively (p<0.05). Maximum increase in TT (mean±SD) was 9.3±4.9°C at 60minutes (IV), 4.6±2.8°C at 45minutes (IM) and 1.9±1.9°C at 60minutes (SC). TT was significantly higher at 15, 60, 120 and 180minutes, and at 15, 30, 45, 60 and 120minutes after IV administration compared to IM and SC, respectively. IV and IM buprenorphine concentration-time data decreased curvilinearly. SC PK could not be modeled due to erratic absorption and disposition. IV buprenorphine disposition was similar to published data. The PK-PD model showed an onset delay mainly attributable to slow biophase equilibration (t1/2ke0=47.4minutes) and receptor binding (kon=0.011mL ng-1minute-1). Persistence of thermal antinociception was due to slow receptor dissociation (t1/2koff=18.2minutes). Conclusions and clinical relevance IV and IM data followed classical disposition and elimination in most cats. Plasma concentrations after IV administration were associated with antinociceptive effect in a PK-PD model including negative hysteresis. At the doses administered, the IV route should be preferred over the IM and SC routes when buprenorphine is administered to cats. © 2012 Association of Veterinary Anaesthetists and the American College of Veterinary Anesthesiologists.
Resumo:
The objective of this experiment was to evaluate the effects of glucose infusion on serum concentrations of glucose, insulin, and progesterone (P4), as well as mRNA expression of hepatic CYP2C19 and CYP3A4 in nonlactating, ovariectomized cows in adequate nutritional status. Eight Gir × Holstein cows were maintained on a low-quality Brachiaria brizantha pasture with reduced forage availability, but they individually received, on average, 3. kg/cow daily (as fed) of a corn-based concentrate from d -28 to 0 of the experiment. All cows had an intravaginal P4-releasing device inserted on d -14, which remained in cows until the end of the experiment (d 1). On d 0, cows were randomly assigned to receive, in a crossover design containing 2 periods of 24. h each (d 0 and 1), (1) an intravenous glucose infusion (GLUC; 0.5. g of glucose/kg of BW, over a 3-h period) or (2) an intravenous saline infusion (SAL; 0.9%, over a 3-h period). Cows were fasted for 12. h before infusions, and they remained fasted during infusion and sample collections. Blood samples were collected at 0, 3, and 6. h relative to the beginning of infusions. Liver biopsies were performed concurrently with blood collections at 0 and 3. h. After the last blood collection of period 1, cows received concentrate and returned to pasture. Cows gained BW (16.5 ± 3.6. kg) and BCS (0.08 ± 0.06) from d -28 to 0. Cows receiving GLUC had greater serum glucose and insulin concentrations at 3. h compared with SAL cohorts. No treatment effects were detected for serum P4 concentrations, although mRNA expression of CYP2C19 and CYP3A4 after the infusion period was reduced for cows in the GLUC treatment compared with their cohorts in the SAL treatment. In conclusion, hepatic CYP3A4 and CYP2C19 mRNA expression can be promptly modulated by glucose infusion followed by acute increases in circulating insulin, which provides novel insight into the physiological mechanisms associating nutrition and reproductive function in dairy cows. © 2013 American Dairy Science Association.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Three experiments evaluated serum insulin and progesterone (P4) concentrations in grazing Gir×Holstein cows supplemented with monensin (MON) or propylene glycol (PPG; 2.5mL/kg of live weight0.75 per drench). Cows were non-lactating, ovariectomized, and received an intravaginal drug-releasing device containing 1.9g of P4 to estimate treatment effects on hepatic P4 degradation. In Exp. 1, 15 cows received, in a crossover design containing 2 periods of 21d, 0.1kg/d of corn in addition to 2g/d of kaolin (CON) or 0.2g/d of MON. Blood samples were collected on d 13 and 20 of each period. Cows receiving CON had greater (P<0.05) serum insulin concentrations compared with MON prior to and 6h after feeding. However, MON cows had greater (P=0.01) serum P4 concentrations compared with CON 18h after feeding. In experiment 2, 15 cows received, in a replicated crossover design containing 2 periods of 24h, a single drench of PPG or water (WT). Cows receiving PPG had greater (P<0.01) serum insulin concentrations compared with WT from 0.5 to 3h after drench. However, PPG cows had reduced (P<0.05) serum P4 concentrations compared with WT at 1 and 2h after drench. In experiment 3, 13 cows received, in a replicated 3×3 Latin square design containing 3 periods of 24h, 3 PPG drenches administered 1h apart (PPG3x), 3 WT drenches administered 1h apart, or 1 PPG drench+2 WT drenches administered 1h apart (PPG1x). Serum insulin concentrations increased proportionally to PPG dosage (treatment×hour; P<0.01). However, mean serum P4 concentration was greater (P<0.01) in WT cows compared with PPG1x and PPG3x, but similar (P=0.25) between PPG1x and PPG3x cows. In conclusion, feeding propiogenic ingredients to grazing cows failed to substantially increase serum P4 concentrations. © 2013 Elsevier B.V.
Resumo:
The antinociceptive and behavioral effects of methadone (MET) alone or combined with detomidine (DET) were studied in horses. Intravenous treatments were randomly administered in a two-phase crossover study. In phase 1, six horses were treated with saline (control) or 0.2 or 0.5 mg/kg methadone (MET0.2; MET0.5, respectively). In phase 2, six horses were treated with 0.01 mg/kg DET alone or with DET combined with 0.2 mg/kg MET (DET/MET0.2). Thermal nociceptive threshold (TNT) and electrical nociceptive thresholds (ENT) were recorded by using a heat projection lamp and electrodes placed in the coronary band of the thoracic limbs, respectively. Spontaneous locomotor activity (SLA) was studied by movement sensors in the stall (phase 1). Chin-to-floor distance was assessed in phase 2. In phase 1, the TNT increased significantly for 30 minute after MET0.5 but not after saline or MET0.2. Hyperesthesia and ataxia were observed in 2 of 6 and 6 of 6 horses after MET0.2 and MET0.5, respectively. SLA increased significantly for 120 minutes after MET in a dose-dependent way, but not after placebo. In phase 2, DET and DET/MET0.2 significantly increased the TNT and ENT above baseline for 15 and 30 minutes, respectively; thresholds were significantly higher with DET/MET0.2 than with DET at the same times. Chin-to-floor distance decreased significantly from baseline for 30 minutes, and no excitatory behavior was observed in both treatments. Although the higher dose of MET induced short-acting antinociception, the associated adverse effects may contraindicate its clinical use. The lower dose of MET potentiated DET-induced antinociception without adverse effects, which might be useful under clinical circumstances. © 2013 Elsevier Inc. All rights reserved.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Medicina Veterinária - FMVZ
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Includes bibliography
Resumo:
Includes bibliography
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)