896 resultados para Specific Pathogen-Free Organisms


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hydrogel polymers are used for the manufacture of soft (or disposable) contact lenses worldwide today, but have a tendency to dehydrate on the eye. In vitro methods that can probe the potential for a given hydrogel polymer to dehydrate in vivo are much sought after. Nuclear magnetic resonance (NMR) has been shown to be effective in characterising water mobility and binding in similar systems (Barbieri, Quaglia et al., 1998, Larsen, Huff et al., 1990, Peschier, Bouwstra et al., 1993), predominantly through measurement of the spin-lattice relaxation time (T1), the spinspin relaxation time (T2) and the water diffusion coefficient (D). The aim of this work was to use NMR to quantify the molecular behaviour of water in a series of commercially available contact lens hydrogels, and relate these measurements to the binding and mobility of the water, and ultimately the potential for the hydrogel to dehydrate. As a preliminary study, in vitro evaporation rates were measured for a set of commercial contact lens hydrogels. Following this, comprehensive measurement of the temperature and water content dependencies of T1, T2 and D was performed for a series of commercial hydrogels that spanned the spectrum of equilibrium water content (EWC) and common compositions of contact lenses that are manufactured today. To quantify material differences, the data were then modelled based on theory that had been used for similar systems in the literature (Walker, Balmer et al., 1989, Hills, Takacs et al., 1989). The differences were related to differences in water binding and mobility. The evaporative results suggested that the EWC of the material was important in determining a material's potential to dehydrate in this way. Similarly, the NMR water self-diffusion coefficient was also found to be largely (if not wholly) determined by the WC. A specific binding model confirmed that the we was the dominant factor in determining the diffusive behaviour, but also suggested that subtle differences existed between the materials used, based on their equilibrium we (EWC). However, an alternative modified free volume model suggested that only the current water content of the material was important in determining the diffusive behaviour, and not the equilibrium water content. It was shown that T2 relaxation was dominated by chemical exchange between water and exchangeable polymer protons for materials that contained exchangeable polymer protons. The data was analysed using a proton exchange model, and the results were again reasonably correlated with EWC. Specifically, it was found that the average water mobility increased with increasing EWe approaching that of free water. The T1 relaxation was also shown to be reasonably well described by the same model. The main conclusion that can be drawn from this work is that the hydrogel EWe is an important parameter, which largely determines the behaviour of water in the gel. Higher EWe results in a hydrogel with water that behaves more like bulk water on average, or is less strongly 'bound' on average, compared with a lower EWe material. Based on the set of materials used, significant differences due to composition (for materials of the same or similar water content) could not be found. Similar studies could be used in the future to highlight hydrogels that deviate significantly from this 'average' behaviour, and may therefore have the least/greatest potential to dehydrate on the eye.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The numerical modelling of electromagnetic waves has been the focus of many research areas in the past. Some specific applications of electromagnetic wave scattering are in the fields of Microwave Heating and Radar Communication Systems. The equations that govern the fundamental behaviour of electromagnetic wave propagation in waveguides and cavities are the Maxwell's equations. In the literature, a number of methods have been employed to solve these equations. Of these methods, the classical Finite-Difference Time-Domain scheme, which uses a staggered time and space discretisation, is the most well known and widely used. However, it is complicated to implement this method on an irregular computational domain using an unstructured mesh. In this work, a coupled method is introduced for the solution of Maxwell's equations. It is proposed that the free-space component of the solution is computed in the time domain, whilst the load is resolved using the frequency dependent electric field Helmholtz equation. This methodology results in a timefrequency domain hybrid scheme. For the Helmholtz equation, boundary conditions are generated from the time dependent free-space solutions. The boundary information is mapped into the frequency domain using the Discrete Fourier Transform. The solution for the electric field components is obtained by solving a sparse-complex system of linear equations. The hybrid method has been tested for both waveguide and cavity configurations. Numerical tests performed on waveguides and cavities for inhomogeneous lossy materials highlight the accuracy and computational efficiency of the newly proposed hybrid computational electromagnetic strategy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Diarrhoea is one of the leading causes of morbidity and mortality in populations in developing countries and is a significant health issue throughout the world. Despite the frequency and the severity of the diarrhoeal disease, mechanisms of pathogenesis for many of the causative agents have been poorly characterised. Although implicated in a number of intestinal and extra-intestinal infections in humans, Plesiomonas shigelloides generally has been dismissed as an enteropathogen due to the lack of clearly demonstrated virulence-associated properties such as production of cytotoxins and enterotoxins or invasive abilities. However, evidence from a number of sources has indicated that this species may be the cause of a number of clinical infections. The work described in this thesis seeks to resolve this discrepancy by investigating the pathogenic potential of P. shigelloides using in vitro cell models. The focus of this research centres on how this organism interacts with human host cells in an experimental model. Very little is known about the pathogenic potential of P. shigel/oides and its mechanisms in human infections and disease. However, disease manifestations mimic those of other related microorganisms. Chapter 2 reviews microbial pathogenesis in general, with an emphasis on understanding the mechanisms resulting from infection with bacterial pathogens and the alterations in host cell biology. In addition, this review analyses the pathogenic status of a poorly-defined enteropathogen, P. shigelloides. Key stages of pathogenicity must occur in order for a bacterial pathogen to cause disease. Such stages include bacterial adherence to host tissue, bacterial entry into host tissues (usually required), multiplication within host tissues, evasion of host defence mechanisms and the causation of damage. In this study, these key strategies in infection and disease were sought to help assess the pathogenic potential of P. shigelloides (Chapter 3). Twelve isolates of P. shigelloides, obtained from clinical cases of gastroenteritis, were used to infect monolayers of human intestinal epithelial cells in vitro. Ultrastructural analysis demonstrated that P. shigelloides was able to adhere to the microvilli at the apical surface of the epithelial cells and also to the plasma membranes of both apical and basal surfaces. Furthermore, it was demonstrated that these isolates were able to enter intestinal epithelial cells. Internalised bacteria often were confined within vacuoles surrounded by single or multiple membranes. Observation of bacteria within membranebound vacuoles suggests that uptake of P. shigelloides into intestinal epithelial cells occurs via a process morphologically comparable to phagocytosis. Bacterial cells also were observed free in the host cell cytoplasm, indicating that P. shige/loides is able to escape from the surrounding vacuolar membrane and exist within the cytosol of the host. Plesiomonas shigelloides has not only been implicated in gastrointestinal infections, but also in a range of non-intestinal infections such as cholecystitis, proctitis, septicaemia and meningitis. The mechanisms by which P. shigelloides causes these infections are not understood. Previous research was unable to ascertain the pathogenic potential of P. shigel/oides using cells of non-intestinal origin (HEp-2 cells derived from a human larynx carcinoma and Hela cells derived from a cervical carcinoma). However, with the recent findings (from this study) that P. shigelloides can adhere to and enter intestinal cells, it was hypothesised, that P. shigel/oides would be able to enter Hela and HEp-2 cells. Six clinical isolates of P. shigelloides, which previously have been shown to be invasive to intestinally derived Caco-2 cells (Chapter 3) were used to study interactions with Hela and HEp-2 cells (Chapter 4). These isolates were shown to adhere to and enter both nonintestinal host cell lines. Plesiomonas shigelloides were observed within vacuoles surrounded by single and multiple membranes, as well as free in the host cell cytosol, similar to infection by P. shigelloides of Caco-2 cells. Comparisons of the number of bacteria adhered to and present intracellularly within Hela, HEp-2 and Caco-2 cells revealed a preference of P. shigelloides for Caco-2 cells. This study conclusively showed for the first time that P. shigelloides is able to enter HEp-2 and Hela cells, demonstrating the potential ability to cause an infection and/or disease of extra-intestinal sites in humans. Further high resolution ultrastructural analysis of the mechanisms involved in P. shigelloides adherence to intestinal epithelial cells (Chapter 5) revealed numerous prominent surface features which appeared to be involved in the binding of P. shige/loides to host cells. These surface structures varied in morphology from small bumps across the bacterial cell surface to much longer filaments. Evidence that flagella might play a role in bacterial adherence also was found. The hypothesis that filamentous appendages are morphologically expressed when in contact with host cells also was tested. Observations of bacteria free in the host cell cytosol suggests that P. shigelloides is able to lyse free from the initial vacuolar compartment. The vacuoles containing P. shigel/oides within host cells have not been characterised and the point at which P. shigelloides escapes from the surrounding vacuolar compartment has not been determined. A cytochemical detection assay for acid phosphatase, an enzymatic marker for lysosomes, was used to analyse the co-localisation of bacteria-containing vacuoles and acid phosphatase activity (Chapter 6). Acid phosphatase activity was not detected in these bacteria-containing vacuoles. However, the surface of many intracellular and extracellular bacteria demonstrated high levels of acid phosphatase activity, leading to the proposal of a new virulence factor for P. shigelloides. For many pathogens, the efficiency with which they adhere to and enter host cells is dependant upon the bacterial phase of growth. Such dependency reflects the timing of expression of particular virulence factors important for bacterial pathogenesis. In previous studies (Chapter 3 to Chapter 6), an overnight culture of P. shigelloides was used to investigate a number of interactions, however, it was unknown whether this allowed expression of bacterial factors to permit efficient P. shigelloides attachment and entry into human cells. In this study (Chapter 7), a number of clinical and environmental P. shigelloides isolates were investigated to determine whether adherence and entry into host cells in vitro was more efficient during exponential-phase or stationary-phase bacterial growth. An increase in the number of adherent and intracellular bacteria was demonstrated when bacteria were inoculated into host cell cultures in exponential phase cultures. This was demonstrated clearly for 3 out of 4 isolates examined. In addition, an increase in the morphological expression of filamentous appendages, a suggested virulence factor for P. shigel/oides, was observed for bacteria in exponential growth phase. These observations suggest that virulence determinants for P. shigel/oides may be more efficiently expressed when bacteria are in exponential growth phase. This study demonstrated also, for the first time, that environmental water isolates of P. shigelloides were able to adhere to and enter human intestinal cells in vitro. These isolates were seen to enter Caco-2 host cells through a process comparable to the clinical isolates examined. These findings support the hypothesis of a water transmission route for P. shigelloides infections. The results presented in this thesis contribute significantly to our understanding of the pathogenic mechanisms involved in P. shigelloides infections and disease. Several of the factors involved in P. shigelloides pathogenesis have homologues in other pathogens of the human intestine, namely Vibrio, Aeromonas, Salmonella, Shigella species and diarrhoeaassociated strains of Escherichia coli. This study emphasises the relevance of research into Plesiomonas as a means of furthering our understanding of bacterial virulence in general. As well it provides tantalising clues on normal and pathogenic host cell mechanisms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Prostate cancer is an important male health issue. The strategies used to diagnose and treat prostate cancer underscore the cell and molecular interactions that promote disease progression. Prostate cancer is histologically defined by increasingly undifferentiated tumour cells and therapeutically targeted by androgen ablation. Even as the normal glandular architecture of the adult prostate is lost, prostate cancer cells remain dependent on the androgen receptor (AR) for growth and survival. This project focused on androgen-regulated gene expression, altered cellular differentiation, and the nexus between these two concepts. The AR controls prostate development, homeostasis and cancer progression by regulating the expression of downstream genes. Kallikrein-related serine peptidases are prominent transcriptional targets of AR in the adult prostate. Kallikrein 3 (KLK3), which is commonly referred to as prostate-specific antigen, is the current serum biomarker for prostate cancer. Other kallikreins are potential adjunct biomarkers. As secreted proteases, kallikreins act through enzyme cascades that may modulate the prostate cancer microenvironment. Both as a panel of biomarkers and cascade of proteases, the roles of kallikreins are interconnected. Yet the expression and regulation of different kallikreins in prostate cancer has not been compared. In this study, a spectrum of prostate cell lines was used to evaluate the expression profile of all 15 members of the kallikrein family. A cluster of genes was co-ordinately expressed in androgenresponsive cell lines. This group of kallikreins included KLK2, 3, 4 and 15, which are located adjacent to one another at the centromeric end of the kallikrein locus. KLK14 was also of interest, because it was ubiquitously expressed among the prostate cell lines. Immunohistochemistry showed that these 5 kallikreins are co-expressed in benign and malignant prostate tissue. The androgen-regulated expression of KLK2 and KLK3 is well-characterised, but has not been compared with other kallikreins. Therefore, KLK2, 3, 4, 14 and 15 expression were all measured in time course and dose response experiments with androgens, AR-antagonist treatments, hormone deprivation experiments and cells transfected with AR siRNA. Collectively, these experiments demonstrated that prostatic kallikreins are specifically and directly regulated by the AR. The data also revealed that kallikrein genes are differentially regulated by androgens; KLK2 and KLK3 were strongly up-regulated, KLK4 and KLK15 were modestly up-regulated, and KLK14 was repressed. Notably, KLK14 is located at the telomeric end of the kallikrein locus, far away from the centromeric cluster of kallikreins that are stimulated by androgens. These results show that the expression of KLK2, 3, 4, 14 and 15 is maintained in prostate cancer, but that these genes exhibit different responses to androgens. This makes the kallikrein locus an ideal model to investigate AR signalling. The increasingly dedifferentiated phenotype of aggressive prostate cancer cells is accompanied by the re-expression of signalling molecules that are usually expressed during embryogenesis and foetal tissue development. The Wnt pathway is one developmental cascade that is reactivated in prostate cancer. The canonical Wnt cascade regulates the intracellular levels of β-catenin, a potent transcriptional co-activator of T-cell factor (TCF) transcription factors. Notably, β-catenin can also bind to the AR and synergistically stimulate androgen-mediated gene expression. This is at the expense of typical Wnt/TCF target genes, because the AR:β-catenin and TCF:β-catenin interactions are mutually exclusive. The effect of β-catenin on kallikrein expression was examined to further investigate the role of β-catenin in prostate cancer. Stable knockdown of β-catenin in LNCaP prostate cancer cells attenuated the androgen-regulated expression of KLK2, 3, 4 and 15, but not KLK14. To test whether KLK14 is instead a TCF:β-catenin target gene, the endogenous levels of β-catenin were increased by inhibiting its degradation. Although KLK14 expression was up-regulated by these treatments, siRNA knockdown of β-catenin demonstrated that this effect was independent of β-catenin. These results show that β-catenin is required for maximal expression of KLK2, 3, 4 and 15, but not KLK14. Developmental cells and tumour cells express a similar repertoire of signalling molecules, which means that these different cell types are responsive to one another. Previous reports have shown that stem cells and foetal tissues can reprogram aggressive cancer cells to less aggressive phenotypes by restoring the balance to developmental signalling pathways that are highly dysregulated in cancer. To investigate this phenomenon in prostate cancer, DU145 and PC-3 prostate cancer cells were cultured on matrices pre-conditioned with human embryonic stem cells (hESCs). Soft agar assays showed that prostate cancer cells exposed to hESC conditioned matrices had reduced clonogenicity compared with cells harvested from control matrices. A recent study demonstrated that this effect was partially due to hESC-derived Lefty, an antagonist of Nodal. A member of the transforming growth factor β (TGFβ) superfamily, Nodal regulates embryogenesis and is re-expressed in cancer. The role of Nodal in prostate cancer has not previously been reported. Therefore, the expression and function of the Nodal signalling pathway in prostate cancer was investigated. Western blots confirmed that Nodal is expressed in DU145 and PC-3 cells. Immunohistochemistry revealed greater expression of Nodal in malignant versus benign glands. Notably, the Nodal inhibitor, Lefty, was not expressed at the mRNA level in any prostate cell lines tested. The Nodal signalling pathway is functionally active in prostate cancer cells. Recombinant Nodal treatments triggered downstream phosphorylation of Smad2 in DU145 and LNCaP cells, and stably-transfected Nodal increased the clonogencity of LNCaP cells. Nodal was also found to modulate AR signalling. Nodal reduced the activity of an androgen-regulated KLK3 promoter construct in luciferase assays and attenuated the endogenous expression of AR target genes including prostatic kallikreins. These results demonstrate that Nodal is a novel example of a developmental signalling molecule that is reexpressed in prostate cancer and may have a functional role in prostate cancer progression. In summary, this project clarifies the role of androgens and changing cellular differentiation in prostate cancer by characterising the expression and function of the downstream genes encoding kallikrein-related serine proteases and Nodal. Furthermore, this study emphasises the similarities between prostate cancer and early development, and the crosstalk between developmental signalling pathways and the AR axis. The outcomes of this project also affirm the utility of the kallikrein locus as a model system to monitor tumour progression and the phenotype of prostate cancer cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Maintenance trains travel in convoy. In Australia, only the first train of the convoy pays attention to the track sig- nalization (the other convoy vehicles simply follow the preceding vehicle). Because of human errors, collisions can happen between the maintenance vehicles. Although an anti-collision system based on a laser distance meter is already in operation, the existing system has a limited range due to the curvature of the tracks. In this paper, we introduce an anti-collision system based on vision. The two main ideas are, (1) to warp the camera image into an image where the rails are parallel through a projective transform, and (2) to track the two rail curves simultaneously by evaluating small parallel segments. The performance of the system is demonstrated on an image dataset.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we report on a metal-catalyst-free synthesis of carbon nanotubes (CNTs) on a pre-patterned Si(001) surface. Arrays of triangular-shaped holes were created by nanoindentation in specific sites of the sample. After germanium deposition and chemical vapor deposition (CVD) of acetylene, a few CNTs nucleated and grew from germanium nanoparticles. These results illustrate that it is possible to control the growth of CNTs without the use of any metal catalyst. By leading the assembly of Ge nanoparticles with a patterning technique, a precise control over the growth order is also attainable.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Acute lower respiratory tract infections (ALRTIs) are a common cause of morbidity and mortality among children under 5 years of age and are found worldwide, with pneumonia as the most severe manifestation. Although the incidence of severe disease varies both between individuals and countries, there is still no clear understanding of what causes this variation. Studies of community-acquired pneumonia (CAP) have traditionally not focused on viral causes of disease due to a paucity of diagnostic tools. However, with the emergence of molecular techniques, it is now known that viruses outnumber bacteria as the etiological agents of childhood CAP, especially in children under 2 years of age. The main objective of this study was to investigate viruses contributing to disease severity in cases of childhood ALRTI, using a two year cohort study following 2014 infants and children enrolled in Bandung, Indonesia. A total of 352 nasopharyngeal washes collected from 256 paediatric ALRTI patients were used for analysis. A subset of samples was screened using a novel microarray pathogen detection method that identified respiratory syncytial virus (RSV), human metapneumovirus (hMPV) and human rhinovirus (HRV) in the samples. Real-time RT-PCR was used both for confirming and quantifying viruses found in the nasopharyngeal samples. Viral copy numbers were determined and normalised to the numbers of human cells collected with the use of 18S rRNA. Molecular epidemiology was performed for RSV A and hMPV using sequences to the glycoprotein gene and nucleoprotein gene respectively, to determine genotypes circulating in this Indonesian paediatric cohort. This study found that HRV (119/352; 33.8%) was the most common virus detected as the cause of respiratory tract infections in this cohort, followed by the viral pathogens RSV A (73/352; 20.7%), hMPV (30/352; 8.5%) and RSV B (12/352; 3.4%). Co-infections of more than two viruses were detected in 31 episodes (defined as an infection which occurred more than two weeks apart), accounting for 8.8% of the 352 samples tested or 15.4% of the 201 episodes with at least one virus detected. RSV A genotypes circulating in this population were predominantly GA2, GA5 and GA7, while hMPV genotypes circulating were mainly A2a (27/30; 90.0%), B2 (2/30; 6.7%) and A1 (1/30; 3.3%). This study found no evidence of disease severity associated either with a specific virus or viral strain, or with viral load. However, this study did find a significant association with co-infection of RSV A and HRV with severe disease (P = 0.006), suggesting that this may be a novel cause of severe disease.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Developmental progression and differentiation of distinct cell types depend on the regulation of gene expression in space and time. Tools that allow spatial and temporal control of gene expression are crucial for the accurate elucidation of gene function. Most systems to manipulate gene expression allow control of only one factor, space or time, and currently available systems that control both temporal and spatial expression of genes have their limitations. We have developed a versatile two-component system that overcomes these limitations, providing reliable, conditional gene activation in restricted tissues or cell types. This system allows conditional tissue-specific ectopic gene expression and provides a tool for conditional cell type- or tissue-specific complementation of mutants. The chimeric transcription factor XVE, in conjunction with Gateway recombination cloning technology, was used to generate a tractable system that can efficiently and faithfully activate target genes in a variety of cell types. Six promoters/enhancers, each with different tissue specificities (including vascular tissue, trichomes, root, and reproductive cell types), were used in activation constructs to generate different expression patterns of XVE. Conditional transactivation of reporter genes was achieved in a predictable, tissue-specific pattern of expression, following the insertion of the activator or the responder T-DNA in a wide variety of positions in the genome. Expression patterns were faithfully replicated in independent transgenic plant lines. Results demonstrate that we can also induce mutant phenotypes using conditional ectopic gene expression. One of these mutant phenotypes could not have been identified using noninducible ectopic gene expression approaches.