863 resultados para Spatial Durbin model


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We propose a stage-structured integrodifference model for blowflies' growth and dispersion taking into account the density dependence of fertility and survival rates and the non-overlap of generations. We assume a discrete-time, stage-structured, model. The spatial dynamics is introduced by means of a redistribution kernel. We treat one and two dimensional cases, the latter on the semi-plane, with a reflexive boundary. We analytically show that the upper bound for the invasion front speed is the same as in the one-dimensional case. Using laboratory data for fertility and survival parameters and dispersal data of a single generation from a capture-recapture experiment in South Africa, we obtain an estimate for the velocity of invasion of blowflies of the species Chrysomya albiceps. This model predicts a speed of invasion which was compared to actual observational data for the invasion of the focal species in the Neotropics. Good agreement was found between model and observations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Infant mortality is an important measure of human development, related to the level of welfare of a society. In order to inform public policy, various studies have tried to identify the factors that influence, at an aggregated level, infant mortality. The objective of this paper is to analyze the regional pattern of infant mortality in Brazil, evaluating the effect of infrastructure, socio-economic, and demographic variables to understand its distribution across the country. Methods: Regressions including socio-economic and living conditions variables are conducted in a structure of panel data. More specifically, a spatial panel data model with fixed effects and a spatial error autocorrelation structure is used to help to solve spatial dependence problems. The use of a spatial modeling approach takes into account the potential presence of spillovers between neighboring spatial units. The spatial units considered are Minimum Comparable Areas, defined to provide a consistent definition across Census years. Data are drawn from the 1980, 1991 and 2000 Census of Brazil, and from data collected by the Ministry of Health (DATASUS). In order to identify the influence of health care infrastructure, variables related to the number of public and private hospitals are included. Results: The results indicate that the panel model with spatial effects provides the best fit to the data. The analysis confirms that the provision of health care infrastructure and social policy measures (e. g. improving education attainment) are linked to reduced rates of infant mortality. An original finding concerns the role of spatial effects in the analysis of IMR. Spillover effects associated with health infrastructure and water and sanitation facilities imply that there are regional benefits beyond the unit of analysis. Conclusions: A spatial modeling approach is important to produce reliable estimates in the analysis of panel IMR data. Substantively, this paper contributes to our understanding of the physical and social factors that influence IMR in the case of a developing country.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Effects of roads on wildlife and its habitat have been measured using metrics, such as the nearest road distance, road density, and effective mesh size. In this work we introduce two new indices: (1) Integral Road Effect (IRE), which measured the sum effects of points in a road at a fixed point in the forest; and (2) Average Value of the Infinitesimal Road Effect (AVIRE), which measured the average of the effects of roads at this point. IRE is formally defined as the line integral of a special function (the infinitesimal road effect) along the curves that model the roads, whereas AVIRE is the quotient of IRE by the length of the roads. Combining tools of ArcGIS software with a numerical algorithm, we calculated these and other road and habitat cover indices in a sample of points in a human-modified landscape in the Brazilian Atlantic Forest, where data on the abundance of two groups of small mammals (forest specialists and habitat generalists) were collected in the field. We then compared through the Akaike Information Criterion (AIC) a set of candidate regression models to explain the variation in small mammal abundance, including models with our two new road indices (AVIRE and IRE) or models with other road effect indices (nearest road distance, mesh size, and road density), and reference models (containing only habitat indices, or only the intercept without the effect of any variable). Compared to other road effect indices, AVIRE showed the best performance to explain abundance of forest specialist species, whereas the nearest road distance obtained the best performance to generalist species. AVIRE and habitat together were included in the best model for both small mammal groups, that is, higher abundance of specialist and generalist small mammals occurred where there is lower average road effect (less AVIRE) and more habitat. Moreover, AVIRE was not significantly correlated with habitat cover of specialists and generalists differing from the other road effect indices, except mesh size, which allows for separating the effect of roads from the effect of habitat on small mammal communities. We suggest that the proposed indices and GIS procedures could also be useful to describe other spatial ecological phenomena, such as edge effect in habitat fragments. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Scientists predict that global agricultural lands will expand over the next few decades due to increasing demands for food production and an exponential increase in crop-based biofuel production. These changes in land use will greatly impact biogeochemical and biogeophysical cycles across the globe. It is therefore important to develop models that can accurately simulate the interactions between the atmosphere and important crops. In this study, we develop and validate a new process-based sugarcane model (included as a module within the Agro-IBIS dynamic agro-ecosystem model) which can be applied at multiple spatial scales. At site level, the model systematically under/overestimated the daily sensible/latent heat flux (by -10.5% and 14.8%, H and E, respectively) when compared against the micrometeorological observations from southeast Brazil. The model underestimated ET (relative bias between -10.1% and 12.5%) when compared against an agro-meteorological field experiment from northeast Australia. At the regional level, the model accurately simulated average yield for the four largest mesoregions (clusters of municipalities) in the state of Sao Paulo, Brazil, over a period of 16 years, with a yield relative bias of -0.68% to 1.08%. Finally, the simulated annual average sugarcane yield over 31 years for the state of Louisiana (US) had a low relative bias (-2.67%), but exhibited a lower interannual variability than the observed yields.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We use the photosensitive chlorine dioxide-iodine-malonic acid reaction-diffusion system to study wavenumber locking of Turing patterns to two-dimensional "square" spatial forcing, implemented as orthogonal sets of bright bands projected onto the reaction medium. Various resonant structures emerge in a broad range of forcing wavelengths and amplitudes, including square lattices and superlattices, one-dimensional stripe patterns and oblique rectangular patterns. Numerical simulations using a model that incorporates additive two-dimensional spatially periodic forcing reproduce well the experimental observations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Robust analysis of vector fields has been established as an important tool for deriving insights from the complex systems these fields model. Traditional analysis and visualization techniques rely primarily on computing streamlines through numerical integration. The inherent numerical errors of such approaches are usually ignored, leading to inconsistencies that cause unreliable visualizations and can ultimately prevent in-depth analysis. We propose a new representation for vector fields on surfaces that replaces numerical integration through triangles with maps from the triangle boundaries to themselves. This representation, called edge maps, permits a concise description of flow behaviors and is equivalent to computing all possible streamlines at a user defined error threshold. Independent of this error streamlines computed using edge maps are guaranteed to be consistent up to floating point precision, enabling the stable extraction of features such as the topological skeleton. Furthermore, our representation explicitly stores spatial and temporal errors which we use to produce more informative visualizations. This work describes the construction of edge maps, the error quantification, and a refinement procedure to adhere to a user defined error bound. Finally, we introduce new visualizations using the additional information provided by edge maps to indicate the uncertainty involved in computing streamlines and topological structures.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work, we employ renormalization group methods to study the general behavior of field theories possessing anisotropic scaling in the spacetime variables. The Lorentz symmetry breaking that accompanies these models are either soft, if no higher spatial derivative is present, or it may have a more complex structure if higher spatial derivatives are also included. Both situations are discussed in models with only scalar fields and also in models with fermions as a Yukawa-like model.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Questions Does the spatial association between isolated adult trees and understorey plants change along a gradient of sand dunes? Does this association depend on the life form of the understorey plant? Location Coastal sand dunes, southeast Brazil. Methods We recorded the occurrence of understorey plant species in 100 paired 0.25 m2 plots under adult trees and in adjacent treeless sites along an environmental gradient from beach to inland. Occurrence probabilities were modelled as a function of the fixed variables of the presence of a neighbour, distance from the seashore and life form, and a random variable, the block (i.e. the pair of plots). Generalized linear mixed models (GLMM) were fitted in a backward step-wise procedure using Akaike's information criterion (AIC) for model selection. Results The occurrence of understorey plants was affected by the presence of an adult tree neighbour, but the effect varied with the life form of the understorey species. Positive spatial association was found between isolated adult neighbour and young trees, whereas a negative association was found for shrubs. Moreover, a neutral association was found for lianas, whereas for herbs the effect of the presence of an adult neighbour ranged from neutral to negative, depended on the subgroup considered. The strength of the negative association with forbs increased with distance from the seashore. However, for the other life forms, the associational pattern with adult trees did not change along the gradient. Conclusions For most of the understorey life forms there is no evidence that the spatial association between isolated adult trees and understorey plants changes with the distance from the seashore, as predicted by the stress gradient hypothesis, a common hypothesis in the literature about facilitation in plant communities. Furthermore, the positive spatial association between isolated adult trees and young trees identified along the entire gradient studied indicates a positive feedback that explains the transition from open vegetation to forest in subtropical coastal dune environments.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: In a classical study, Durkheim mapped suicide rates, wealth, and low family density and realized that they clustered in northern France. Assessing others variables, such as religious society, he constructed a framework for the analysis of the suicide, which still allows international comparisons using the same basic methodology. The present study aims to identify possible significantly clusters of suicide in the city of Sao Paulo, and then, verify their statistical associations with socio-economic and cultural characteristics. Methods: A spatial scan statistical test was performed to analyze the geographical pattern of suicide deaths of residents in the city of Sao Paulo by Administrative District, from 1996 to 2005. Relative risks and high and/or low clusters were calculated accounting for gender and age as co-variates, were analyzed using spatial scan statistics to identify geographical patterns. Logistic regression was used to estimate associations with socioeconomic variables, considering, the spatial cluster of high suicide rates as the response variable. Drawing from Durkheim's original work, current World Health Organization (WHO) reports and recent reviews, the following independent variables were considered: marital status, income, education, religion, and migration. Results: The mean suicide rate was 4.1/100,000 inhabitant-years. Against this baseline, two clusters were identified: the first, of increased risk (RR = 1.66), comprising 18 districts in the central region; the second, of decreased risk (RR = 0.78), including 14 districts in the southern region. The downtown area toward the southwestern region of the city displayed the highest risk for suicide, and though the overall risk may be considered low, the rate climbs up to an intermediate level in this region. One logistic regression analysis contrasted the risk cluster (18 districts) against the other remaining 78 districts, testing the effects of socioeconomic-cultural variables. The following categories of proportion of persons within the clusters were identified as risk factors: singles (OR = 2.36), migrants (OR = 1.50), Catholics (OR = 1.37) and higher income (OR = 1.06). In a second logistic model, likewise conceived, the following categories of proportion of persons were identified as protective factors: married (OR = 0.49) and Evangelical (OR = 0.60). Conclusions: This risk/ protection profile is in accordance with the interpretation that, as a social phenomenon, suicide is related to social isolation. Thus, the classical framework put forward by Durkheim seems to still hold, even though its categorical expression requires re-interpretation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The analysis of spatial relations among objects in an image is an important vision problem that involves both shape analysis and structural pattern recognition. In this paper, we propose a new approach to characterize the spatial relation along, an important feature of spatial configurations in space that has been overlooked in the literature up to now. We propose a mathematical definition of the degree to which an object A is along an object B, based on the region between A and B and a degree of elongatedness of this region. In order to better fit the perceptual meaning of the relation, distance information is included as well. In order to cover a more wide range of potential applications, both the crisp and fuzzy cases are considered. In the crisp case, the objects are represented in terms of 2D regions or ID contours, and the definition of the alongness between them is derived from a visibility notion and from the region between the objects. However, the computational complexity of this approach leads us to the proposition of a new model to calculate the between region using the convex hull of the contours. On the fuzzy side, the region-based approach is extended. Experimental results obtained using synthetic shapes and brain structures in medical imaging corroborate the proposed model and the derived measures of alongness, thus showing that they agree with the common sense. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The correlation of soil fertility x seed physiological potential is very important in the area of seed technology but results published with that theme are contradictory. For this reason, this study to evaluate the correlations between soil chemical properties and physiological potential of soybean seeds. On georeferenced points, both soil and seeds were sampled for analysis of soil fertility and seed physiological potential. Data were assessed by the following analyses: descriptive statistics; Pearson's linear correlation; and geostatistics. The adjusted parameters of the semivariograms were used to produce maps of spatial distribution for each variable. Organic matter content, Mn and Cu showed significant effects on seed germination. Most variables studied presented moderate to high spatial dependence. Germination and accelerated aging of seeds, and P, Ca, Mg, Mn, Cu and Zn showed a better fit to spherical semivariogram: organic matter, pH and K had a better fit to Gaussian model; and V% and Fe showed a better fit to the linear model. The values for range of spatial dependence varied from 89.9 m for P until 651.4 m for Fe. These values should be considered when new samples are collected for assessing soil fertility in this production area.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We employ the approach of stochastic dynamics to describe the dissemination of vector-borne diseases such as dengue, and we focus our attention on the characterization of the threshold of the epidemic. The coexistence space comprises two representative spatial structures for both human and mosquito populations. The human population has its evolution described by a process that is similar to the Susceptible-Infected-Recovered (SIR) dynamics. The population of mosquitoes follows a dynamic of the type of the Susceptible Infected-Susceptible (SIS) model. The coexistence space is a bipartite lattice constituted by two structures representing the human and mosquito populations. We develop a truncation scheme to solve the evolution equations for the densities and the two-site correlations from which we get the threshold of the disease and the reproductive ratio. We present a precise deØnition of the reproductive ratio which reveals the importance of the correlations developed in the early stage of the disease. According to our deØnition, the reproductive rate is directed related to the conditional probability of the occurrence of a susceptible human (mosquito) given the presence in the neighborhood of an infected mosquito (human). The threshold of the epidemic as well as the phase transition between the epidemic and the non-epidemic states are also obtained by performing Monte Carlo simulations. References: [1] David R. de Souza, T^ania Tom∂e, , Suani R. T. Pinho, Florisneide R. Barreto and M∂ario J. de Oliveira, Phys. Rev. E 87, 012709 (2013). [2] D. R. de Souza, T. Tom∂e and R. M. ZiÆ, J. Stat. Mech. P03006 (2011).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The quality of temperature and humidity retrievals from the infrared SEVIRI sensors on the geostationary Meteosat Second Generation (MSG) satellites is assessed by means of a one dimensional variational algorithm. The study is performed with the aim of improving the spatial and temporal resolution of available observations to feed analysis systems designed for high resolution regional scale numerical weather prediction (NWP) models. The non-hydrostatic forecast model COSMO (COnsortium for Small scale MOdelling) in the ARPA-SIM operational configuration is used to provide background fields. Only clear sky observations over sea are processed. An optimised 1D–VAR set-up comprising of the two water vapour and the three window channels is selected. It maximises the reduction of errors in the model backgrounds while ensuring ease of operational implementation through accurate bias correction procedures and correct radiative transfer simulations. The 1D–VAR retrieval quality is firstly quantified in relative terms employing statistics to estimate the reduction in the background model errors. Additionally the absolute retrieval accuracy is assessed comparing the analysis with independent radiosonde and satellite observations. The inclusion of satellite data brings a substantial reduction in the warm and dry biases present in the forecast model. Moreover it is shown that the retrieval profiles generated by the 1D–VAR are well correlated with the radiosonde measurements. Subsequently the 1D–VAR technique is applied to two three–dimensional case–studies: a false alarm case–study occurred in Friuli–Venezia–Giulia on the 8th of July 2004 and a heavy precipitation case occurred in Emilia–Romagna region between 9th and 12th of April 2005. The impact of satellite data for these two events is evaluated in terms of increments in the integrated water vapour and saturation water vapour over the column, in the 2 meters temperature and specific humidity and in the surface temperature. To improve the 1D–VAR technique a method to calculate flow–dependent model error covariance matrices is also assessed. The approach employs members from an ensemble forecast system generated by perturbing physical parameterisation schemes inside the model. The improved set–up applied to the case of 8th of July 2004 shows a substantial neutral impact.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work we aim to propose a new approach for preliminary epidemiological studies on Standardized Mortality Ratios (SMR) collected in many spatial regions. A preliminary study on SMRs aims to formulate hypotheses to be investigated via individual epidemiological studies that avoid bias carried on by aggregated analyses. Starting from collecting disease counts and calculating expected disease counts by means of reference population disease rates, in each area an SMR is derived as the MLE under the Poisson assumption on each observation. Such estimators have high standard errors in small areas, i.e. where the expected count is low either because of the low population underlying the area or the rarity of the disease under study. Disease mapping models and other techniques for screening disease rates among the map aiming to detect anomalies and possible high-risk areas have been proposed in literature according to the classic and the Bayesian paradigm. Our proposal is approaching this issue by a decision-oriented method, which focus on multiple testing control, without however leaving the preliminary study perspective that an analysis on SMR indicators is asked to. We implement the control of the FDR, a quantity largely used to address multiple comparisons problems in the eld of microarray data analysis but which is not usually employed in disease mapping. Controlling the FDR means providing an estimate of the FDR for a set of rejected null hypotheses. The small areas issue arises diculties in applying traditional methods for FDR estimation, that are usually based only on the p-values knowledge (Benjamini and Hochberg, 1995; Storey, 2003). Tests evaluated by a traditional p-value provide weak power in small areas, where the expected number of disease cases is small. Moreover tests cannot be assumed as independent when spatial correlation between SMRs is expected, neither they are identical distributed when population underlying the map is heterogeneous. The Bayesian paradigm oers a way to overcome the inappropriateness of p-values based methods. Another peculiarity of the present work is to propose a hierarchical full Bayesian model for FDR estimation in testing many null hypothesis of absence of risk.We will use concepts of Bayesian models for disease mapping, referring in particular to the Besag York and Mollié model (1991) often used in practice for its exible prior assumption on the risks distribution across regions. The borrowing of strength between prior and likelihood typical of a hierarchical Bayesian model takes the advantage of evaluating a singular test (i.e. a test in a singular area) by means of all observations in the map under study, rather than just by means of the singular observation. This allows to improve the power test in small areas and addressing more appropriately the spatial correlation issue that suggests that relative risks are closer in spatially contiguous regions. The proposed model aims to estimate the FDR by means of the MCMC estimated posterior probabilities b i's of the null hypothesis (absence of risk) for each area. An estimate of the expected FDR conditional on data (\FDR) can be calculated in any set of b i's relative to areas declared at high-risk (where thenull hypothesis is rejected) by averaging the b i's themselves. The\FDR can be used to provide an easy decision rule for selecting high-risk areas, i.e. selecting as many as possible areas such that the\FDR is non-lower than a prexed value; we call them\FDR based decision (or selection) rules. The sensitivity and specicity of such rule depend on the accuracy of the FDR estimate, the over-estimation of FDR causing a loss of power and the under-estimation of FDR producing a loss of specicity. Moreover, our model has the interesting feature of still being able to provide an estimate of relative risk values as in the Besag York and Mollié model (1991). A simulation study to evaluate the model performance in FDR estimation accuracy, sensitivity and specificity of the decision rule, and goodness of estimation of relative risks, was set up. We chose a real map from which we generated several spatial scenarios whose counts of disease vary according to the spatial correlation degree, the size areas, the number of areas where the null hypothesis is true and the risk level in the latter areas. In summarizing simulation results we will always consider the FDR estimation in sets constituted by all b i's selected lower than a threshold t. We will show graphs of the\FDR and the true FDR (known by simulation) plotted against a threshold t to assess the FDR estimation. Varying the threshold we can learn which FDR values can be accurately estimated by the practitioner willing to apply the model (by the closeness between\FDR and true FDR). By plotting the calculated sensitivity and specicity (both known by simulation) vs the\FDR we can check the sensitivity and specicity of the corresponding\FDR based decision rules. For investigating the over-smoothing level of relative risk estimates we will compare box-plots of such estimates in high-risk areas (known by simulation), obtained by both our model and the classic Besag York Mollié model. All the summary tools are worked out for all simulated scenarios (in total 54 scenarios). Results show that FDR is well estimated (in the worst case we get an overestimation, hence a conservative FDR control) in small areas, low risk levels and spatially correlated risks scenarios, that are our primary aims. In such scenarios we have good estimates of the FDR for all values less or equal than 0.10. The sensitivity of\FDR based decision rules is generally low but specicity is high. In such scenario the use of\FDR = 0:05 or\FDR = 0:10 based selection rule can be suggested. In cases where the number of true alternative hypotheses (number of true high-risk areas) is small, also FDR = 0:15 values are well estimated, and \FDR = 0:15 based decision rules gains power maintaining an high specicity. On the other hand, in non-small areas and non-small risk level scenarios the FDR is under-estimated unless for very small values of it (much lower than 0.05); this resulting in a loss of specicity of a\FDR = 0:05 based decision rule. In such scenario\FDR = 0:05 or, even worse,\FDR = 0:1 based decision rules cannot be suggested because the true FDR is actually much higher. As regards the relative risk estimation, our model achieves almost the same results of the classic Besag York Molliè model. For this reason, our model is interesting for its ability to perform both the estimation of relative risk values and the FDR control, except for non-small areas and large risk level scenarios. A case of study is nally presented to show how the method can be used in epidemiology.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Knowledge on how ligaments and articular surfaces guide passive motion at the human ankle joint complex is fundamental for the design of relevant surgical treatments. The dissertation presents a possible improvement of this knowledge by a new kinematic model of the tibiotalar articulation. In this dissertation two one-DOF spatial equivalent mechanisms are presented for the simulation of the passive motion of the human ankle joint: the 5-5 fully parallel mechanism and the fully parallel spherical wrist mechanism. These mechanisms are based on the main anatomical structures of the ankle joint, namely the talus/calcaneus and the tibio/fibula bones at their interface, and the TiCaL and CaFiL ligaments. In order to show the accuracy of the models and the efficiency of the proposed procedure, these mechanisms are synthesized from experimental data and the results are compared with those obtained both during experimental sessions and with data published in the literature. Experimental results proved the efficiency of the proposed new mechanisms to simulate the ankle passive motion and, at the same time, the potentiality of the mechanism to replicate the ankle’s main anatomical structures quite well. The new mechanisms represent a powerful tool for both pre-operation planning and new prosthesis design.