981 resultados para Solvents.
Resumo:
Novel poly(amide imide)s (PAI) containing alkyl-substituted cyclohexylidene moieties were synthesized by conventional polycondensation of trimellitic anhydride chloride with novel aromatic diamines followed by chemical imidization using acetic anhydride and pyridine. The inherent viscosities of the resulting PAIs are relatively high and range from 71 to 112 mt g(-1). The prepared PAIs show excellent thermal stability and good solubility. The glass transition temperatures (T-g) measured by DSC are observed in the range of 312-342 degrees C. Furthermore, all the polymers are readily soluble in less hygroscopic organic solvents like cyclohexanone, gamma-butyrolactone as well as aprotic polar solvents.
Resumo:
An organo-soluble polyimide based on 1,4-bis(3,4-dicarboxyphenoxy) benzene dianhydride (HQDPA) and 2,2'dimethyl-4,4'-methylene dianiline (DMMDA), was synthesized via two-step polycondensation accompanied by chemical imidization. Five fractions were prepared by fractionation. The dilute solutions of the fractions were studied by LLS (Laser Light Scattering) and the intrinsic viscosities of the fractions were measured. The unperturbed dimension was determined by the intrinsic viscosity with the Stockmayer-Fox equation. The results indicate that the polyimide in this study has a flexible chain conformation in chloroform and N,N-dimethyl acetamide (DMAc). However, the degree of chain expansion differs in different solvents. (C) 1998 Published by Elsevier Science Ltd. All rights reserved.
Resumo:
The diffusion coefficients (D) of quinhydrone were estimated in polymer electrolytes by using non-steady-state chronoamperometry and steady-state current voltammetry. The D values have been estimated in polyethylene glycol (PEG) containing different concentrations, and cations of supporting electrolytes, and in different solvents over a range of temperatures. The dependencies of electroactive probe diffusion coefficients on temperature, supporting electrolyte concentration and polymer chain length are discussed. The results show that D increases with increasing temperature and decreasing concentration of supporting electrolyte. The diffusion coefficient depends strongly on the length of polymer chain and decreases sharply with increasing polymer chain length. The contribution of electron self-exchange has been explored and it seems to be negligible here. (C) 1998 Elsevier Science S.A.
Resumo:
The heterogeneous electron transfer rate constants (k(s)) of seven ferrocene derivatives were estimated using cyclic voltammograms under mixed spherical/semi-infinite linear diffusion and steady-state voltammetry at a microdisk electrode in polymer electrolyte. The k(s) and diffusion coefficient (D) are both 100 to 1000-fold smaller in polymer solvent than in monomeric solvents, and the D and k(s) decrease with increasing polymer chain length. The results conform to the difference of viscosity (eta) or relaxation time (tau(L)) for these different solvents. The k(s) and D increase with increasing temperature, and the activation barriers of the electrode reaction are obtained. The influences of the substituting group in the ferrocene ring on k(s) and D are discussed. The k(s) are proportional to the D of the ferrocene derivatives, which indicates that solvent dynamics control the electrode reaction. (C) 1998 Elsevier Science S.A.
Resumo:
Ferric trisacetylacetonate has been deposited within the zeolite MCM-41 and the product characterized by XRD and IR. In water at pH 7 it catalyzes the oxidation of phenol by H2O2, giving 58% conversion in 1 h at 50 degrees C: products are catechol (66%), hydroquinone (27%) and benzoquinone (7%). Other oxidants and solvents are much less effective. UV-VIS spectra suggest a radical substitution mechanism, and a pollution-free process for phenol hydroxylation is now possible.
Resumo:
The responses of a cryohydrogel tyrosinase enzyme electrode to four substrates in three pure water immiscible organic solvents were investigated. Kinetic parameters, the maximum kinetic current, I-max, the apparent Michaelis-Menten constant, K-m(app), and I-max/K-m(app), were calculated. The I-max/K-m(app) value was taken as an indicator of the catalytic efficiency of the sensor. The effect of the substrate hydrophobicity on I-max/K-m(app) and response time of the sensor were discussed. The effects of both hydrophobicity (log P) and dielectric constant (epsilon) of the organic solvent on the catalytic efficiency of the enzyme in the organic phase were studied. (C) 1997 Elsevier Science S.A.
Resumo:
The interaction between horseradish peroxidase (HRP) and the cryo-hydrogel was probed by using hydrazines which show high specificity of the reaction of the edge in the prosthetic heme of horseradish peroxidase. For comparison, the interaction of hydrazine with the horseradish peroxidase adsorbed on graphite electrode was also carried out by using steady-state response of the enzyme electrode and cyclic voltammetry. In order to obtain a proper explanation of the kinetic parameters for the enzymatic reaction, the theoretical expressions of I-max and K-M' in the Michaelis-Menten equation for the experimental system were provided. (C) 1997 Elsevier Science B.V.
Resumo:
Methyl methacrylate (MMA) was polymerized with the rare earth coordination catalyst-system of Nd(O - i-Pr)(3) in toluene. The influences of various ligands in neodymium complexes, molar ratio of Al/Nd, catalyst concentration, catalyst aging time, solvents, the third component CCl4, temperature and time on the polymerization of MMA were studied. The results showed that the polymerization conversion reached more than 80% at a catalyst concentration of 9.2 x 10(-3) mol/L. The appropriate molar ratio of CCl4/Nd was 4. Hydrocarbon was preferred for the polymerzation to obtain a high conversion and a high <(M)over bar w> of PMMA. The H-1 NMR spectra of PMMA indicated that the lower the temperature, the higher the syndiotactic content of PMMA was obtained.
Resumo:
An organo-soluble polyimide was successfully synthesized by two step polycondensation accompanied with chemical imidization. Optical anisotropy of thin films was detected by a prism-coupler technique. The results showed that the optical anisotropic properties of thin films prepared from solutions in different solvents depend on the solution properties. It is concluded that the more expanded the chain conformation in solution, the larger the negative birefringence of thin films. (C) 1997 Elsevier Science Ltd.
Resumo:
The luminescence properties of silica gels and silica gels doped with two rare earth complexes, Eu(TTA)(3) and Tb(o-CBA)(3) (TTA=thenoyltriffuocetate, o-CBA=o-chlorobenzoic acid) are reported and discussed. Pure silica gels show a blue luminescence, and the maximum excitation and emission wavelengths depend strongly on the solvents used. Both of the studied rare earth complexes exhibit the characteristic emissions of the rare earth ions in silica gels, i.e., Eu3+5D0-->F-7(J)(J=0,1,2,3,4), Tb3+5D4-->F-7(J)(J=3,4,5,6) transitions. Compared with the pure RE-complexes powder, the silica gels doped with RE-complexes show fewer emission lines of the rare earth ions. Furthermore the rare earth ion (Tb3+) presents a longer lifetime (1346 mu s) in silica gel doped with Tb(o-CBA)3 than in pure Tb((o-CBA)(3) powder (744 mu s). The reasons responsible for these results are discussed in the context.
Resumo:
A series of new optically active aromatic polyimides containing axially dissymmetric 1,1'-binaphthalene-2,2-diyl units were prepared from optically pure (R)-(+)-or (S)-(-)-2,2'-bis(3,4-dicarboxyphenoxy)-1,1'-binaphthalene dianhydrides and various aromatic diamines via a conventional two-step procedure that included ring-opening polycondensation and chemical cyclodehydration. The optically pure isomer of dianhydride was prepared by a nucleophilic substitution of optically pure (R)-(+)or (S)-(-)1,1'-bi-2-naphthol with 4-nitrophthalonitrile in aprotic polar solvent and subsequent hydrolysis of the resultant tetranitrile derivatives, followed by the dehydration of the corresponding tetracarboxylic acids to obtain the dianhydrides. These polymers were readily soluble in common organic solvents such as N,N-dimethylacetamide, N-methyl-2-pyrrolidone, and m-cresol, etc., and have glass transition temperatures of 251-296 degrees C, and 5% weight loss occurs not lower than 480 degrees C. The specific rotations of the optically active polyimides ranged from +196 degrees to +263 degrees, and the optical stability and chiroptical properties of them were also studied. (C) 1997 John Wiley & Sons, Inc.
Resumo:
A series of novel aromatic diamines (1-3) containing kinked cyclohexylidene moieties was synthesized by a reaction of excess aniline and corresponding methyl-substituted cyclohexanone derivatives. The structures of (1-3) were identifield by H-1 NMR, C-13 NMR, and FT-IR. The polymers were synthesized from the obtained diamines and various aromatic dianhydrides by the conventional polycondensation reaction followed by chemical imidization as well as high-temperature one-step polymerization. The inherent viscosities and weight-average molecular weights of the resulting polyimides were in the ranges of 0.55-1.58 dL/g and (7.4-15.2) x 10(4) g/mol, respectively. The prepared polyimides showed excellent thermal stabilities and good solubility. All polymers were readily soluble in common organic solvents such as tetrahydrofuran, chloroform, tetrachloroethane, etc., and the glass transition temperatures were observed at 290-372 degrees C.
Resumo:
A dimethylformamide-polyhydroxyl cellulose organo-hydrogel has been prepared, and its applications for enzyme immobilization in construction of organic phase biosensors have been exploited. With horseradish peroxidase, tyrosinase, and bilirubin oxidase immobilized in the organohydrogel, enzyme electrodes can be operated in various situations, including aqueous buffer, oil/water mixtures, and anhydrous organic solvents, and even in dimethylformamide, to determine analytes of different solubilities, e.g., organic peroxides, phenolic compounds and bilirubin. Biosensing has no restrictions in terms of measuring media and solubilities of analytes.
Resumo:
Steady-state voltammograms at a microdisk electrode are used to measure the diffusion coefficient (D) and standard heterogeneous rate constant (k(s)) of ferrocene in polyelectrolyte PEG.MClO(4). The diffusion coefficient and standard heterogeneous rate constant of ferrocene are both smaller in polymer solvents than in monomeric solvents. The D and k(s) of ferrocene have been estimated in PEG containing different concentrations and cations of supporting electrolytes, and the dependencies of D and k(s) on temperature have been observed. These results show that the D and k(s) of ferrocene increase with increasing temperature in polyelectrolyte, and with increasing cation radius of supporting electrolyte, eg D and k(s) increase in the order Bu(4)NClO(4) > NaClO4 > LiClO4. On the other hand, D and k(s) increase with decreasing concentration of supporting electrolyte. The dependence of the half-wave potential (E(1/2)) on the concentration of the supporting electrolyte is also observed. E(1/2) shifts in the negative direction as the concentration of supporting electrolyte increases. (C) 1997 Elsevier Science Ltd.
Resumo:
Novel high glass transition temperature polyaryletherketones, containing pendant amido, alkyl, and carboxyl groups with reduced viscosity above 0.54 dL/g, were synthesized via solution nucleophilic polycondensation reaction of phenolphthalin, 2',2 ''-diisopropyl-5',5 ''-dimethylphenolphthalin, and 3,3'-bis(4-hydroxyphenyl)isobenzopyrrolidone with bis(4-nitrophenyl)ketone in the presence of potassium carbonate. By ion exchange with Na+ and K+, four ionomers were also prepared. A new monomer simultaneously containing carboxyl and algyl substituents was synthesized by reduction reaction of 2',2 ''-diisopropyl-5',5 ''-dimethyl-phenolphthalein. The resulting polymers were soluble in a few polar aprotic solvents; transparent, colorless, and tough films could easily be cast from DMF or DMSO solution. The mechanical properties of the films were excellent; and their tensile strength, elongation at break, and tensile moduli were in the range of 67.1-97.1 MPa, 7.8-165%, and 1.47-2.27 GPa, respectively. The prepared polymers showed fairly good thermal stability and resonably high glass transition temperatures above 210 degrees C. (C) 1997 John Wiley & Sons, Inc.