990 resultados para Solar light
Resumo:
Accurate iris reproduction in the fabrication of ocular prosthesis in order to match the remaining eye is a key factor to mask the loss and achieve an esthetic outcome for anophthalmic patients. This study evaluated the stability of acrylic paints used for replicating iris color in ocular prostheses by the analysis of two factors: the temperature of the acrylic resin polymerization cycle during prosthesis fabrication and the incidence of sun light, which is the main photodegrading agent undermining the longevity of ocular prostheses. An accelerated aging assay was used for both analyses. Specimens simulating the prosthetic iris in the colors blue, yellow, black, brown and green were fabricated, and were submitted to a colorimetric reading before and after undergoing the thermal conditions of acrylic resin polymerization. Next, the specimens were submitted to an artificial accelerated aging assay with ultraviolet radiation A and weekly colorimetric readings during a 3-week period. The color change (??*) values for the four specimens painted with the same color paint were averaged and the resulting values were considered for statistical analysis. Levine's test and Student's t-test were used to analyze the influence of the temperature of the polymerization cycle during prosthesis fabrication on the color stability of each acrylic resin paint. Friedman's test for three dependent samples was used for analysis of color photodegradation as function of time. Significance level was set at 0.05 for all analyses. It was observed that, after the action of the temperature of the polymerization cycle, alteration above clinically acceptable level of ??*> 3.3 was observed only for the yellow color. After the accelerated aging assay, there were statistically significant differences (p<0.05) as a function of time in the green, brown, black and blue colors. Changes were clinically acceptable for the brown and black colors; slightly above the clinically acceptable limit for the green color; and significantly high and impracticable from a clinical standpoint for the blue color. There was no statistically significant differences (p>0.05) for the yellow color, which presented color change only a little above the clinically acceptable limit. In conclusion: 1. Only the yellow color presented alterations above the clinically acceptable levels after the polymerization cycle; 2. After accelerated aging, there was no changes in the yellow color above the clinically acceptable levels; 3. For the green color, degradation was significant and slightly above the clinically acceptable levels; 4. The black, brown and blue colors presented significant alterations as function of time; the alterations of the brown and black colors were within acceptable clinical levels, while the blue color presented a more accentuated degradation over time.
Resumo:
The objective of the present study was to evaluate the effects of light and temperature on germination of Cereus pernambucensis seeds, a species of columnar cactus native to Brazil and naturally incident in the restinga. Cereus pernambucensis seeds were incubated under different temperatures, from 5 to 45 °C, with 5 °C intervals, and under alternating temperatures of 15-20 °C, 15-30 °C, 20-25 °C, 20-30 °C, 20-35 °C, 25-30 °C, 25-35 °C, and 30-35 °C, both under continuous white light and dark. The seeds were also incubated in a gradient of phytochrome photoequilibrium at 25 °C. The highest percentage germination in this species was between 25 and 30 °C. The minimum temperature was between 15 and 20 °C and the maximum between 35 and 40 °C. Alternating temperatures did not affect the percentage of seed germination, but it did alter the rate and synchronization indexes. Seeds incubated in the dark did not germinate under any of the conditions tested, indicating that this species when cultivated present light sensitive seeds controlled by phytochrome. The seeds can tolerate a lot of shade conditions, germinating under very low fluence response of phytochrome.
Resumo:
Since 2000, spore dosimetry and spectral photometry have been performed in parallel at the Southern Space Observatory, São Martinho da Serra (Southern Brazil). A comparative study involving data from Punta Arenas - Chile (53.2º S), São Martinho da Serra (29.5º S), Padang - Indonesia (0.9ºS), Brussels - Belgium (50.9º N) and Kiyotake - Japan (31.9º N) from 2000 to 2006 is presented. The Spore Inactivation Doses presented the higher values in summer (973 ± 73 for Punta Arenas and 4,369 ± 202 for São Martinho da Serra, as well 1,402 ± 170 and 3,400 ± 1,674 for Brussels and Kiyotake, respectively). The simplicity, robustness and high resistance of bacterial spores makes the biosensor an potential biological tool for UV-B monitoring.
Resumo:
Empirical data indicate that the so-called ""Buddhism of yellow color"" that is predominantly associated with Japanese ""immigrant"" Buddhism, is constantly in decline in terms of ""explicit"" adherents. After some methodological observations, this article gives an overview of the relevant statistical data. The last part discusses possible reasons for these negative dynamics, referring to causes within Buddhist institutions, the ethnic community, and at the level of the individual.
Resumo:
Introduction Patient-related variables such as physical exercise stress and fasting status are Important sources of variability in laboratory testing However no clear indications about tasting requirements exist for routine haematological tests nor has the influence of meals been assessed Methods We studied 17 healthy volunteers who consumed a light meal containing a standardized amount of carbohydrates, protein and lipids Blood was taken for routine haematological tests before the meal and 1 2 and 4 hours thereafter Results One hour after the meal neutrophil count and mean corpuscular haemoglobin (MHC) increased significantly whereas lymphocyte and monocyte counts red blood cell distribution width, haematocrit, and mean corpuscular volume decreased significantly A clinically significant variation was only observed for lymphocytes Two hours after the meal a significant increase was observed for neutrophils and MCH whereas lymphocytes eosinophils, haemoglobin and haematocrit decreased significantly Clinically significant variations were recorded for lymphocytes red blood cells (RBC), haemoglobin haematocrit and MCH Four hours after the meal MCH was significantly increased while lymphocytes eosinophils, RBC, haemoglobin and haematocrit were significantly decreased Clinically significant variations were recorded for neutrophils eosinophils RBC hematocrit and MCH Conclusion The significant variation of several haematological parameters after a light meal demonstrates that the fasting time needs to be carefully considered in order to interpret the results of haematological tests correctly
Resumo:
Aim: The aim of this study was to evaluate with light microscopy the healing process of third-degree burns on diabetic rats treated with polarized light (lambda 400-2000 nm, 20 or 40 J/cm(2)/session, 40 mW/cm(2), 2.4 J/cm(2)/min, 5.5-cm beam diameter). Background: Uncontrolled diabetes mellitus causes severe disruption of the body's metabolism, including healing. Polarized light sources have been shown to be effective in improving healing in many situations. Animals and Methods: Diabetes mellitus was induced with streptozotocin (60 mg/kg) in 45 male Wistar albino rats, and a third-degree burn (1.5 by 1.5 cm) was created on the dorsum of each animal under general anesthesia. The animals were randomly distributed into three groups: control, 20 J/cm(2), and 40 J/cm(2). Each group was then divided into three subgroups based on time of death (7, 14, 21 d). Phototherapy (20 or 40 J/cm(2) per session) was carried out immediately after the burning and repeated daily until the day before death. Following animal death, specimens were removed, embedded in paraffin, sectioned, and stained with hematoxylin and eosin (HE) or Sirius Red or immunomarked with CK AE1/AE3 antibody. Qualitative and semiquantitative analyses were performed under light microscopy. The results were statistically analyzed. Results: The animals treated with 20 J/cm(2) showed significant differences with regard to revascularization and re-epithelialization. Although the 40 J/cm(2) group showed stimulation of fibroblastic proliferation as an isolated feature, no other difference from the control was observed. Conclusion: Our results suggest that the use of polarized light at 20 J/cm(2) effectively improves the healing of third-degree burns on diabetic animals at both early and late stages of repair.
Resumo:
Phototherapy is noninvasive, painless and has no known side effect. However, for its incorporation into clinical practice, more well-designed studies are necessary to define optimal parameters for its application. The viability of fibroblasts cultured under nutritional stress irradiated with either a red laser, an infrared laser, or a red light-emitting diode (LED) was analyzed. Irradiation parameters were: red laser (660 nm, 40 mW, 1 W/cm(2)), infrared laser (780 nm, 40 mW, 1 W/cm(2)), and red LED (637 +/- 15 nm, 40 mW, 1 W/cm(2)). All applications were punctual and performed with a spot with 0.4 mm(2) of diameter for 4 or 8 s. The Kruskal-Wallis test and analysis of variance of the general linear model (p <= 0.05) were used for statistical analysis. After 72 h, phototherapy with low-intensity laser and LED showed no toxicity at the cellular level. It even stimulated methylthiazol tetrazolium assay (MTT) conversion and neutral red uptake of fibroblasts cultured under nutritional stress, especially in the group irradiated with infrared laser (p = 0.004 for MTT conversion and p < 0.001 for neutral red uptake). Considering the parameters and protocol of phototherapy used, it can be concluded that phototherapy stimulated the viability of fibroblasts cultured under nutritional deficit resembling those found in traumatized tissue in which cell viability is reduced. (C) 2011 Society of Photo-Optical Instrumentation Engineers (SPIE). [DOI: 10.1117/1.3602850]
Resumo:
Context. The turbulent pumping effect corresponds to the transport of magnetic flux due to the presence of density and turbulence gradients in convectively unstable layers. In the induction equation it appears as an advective term and for this reason it is expected to be important in the solar and stellar dynamo processes. Aims. We explore the effects of turbulent pumping in a flux-dominated Babcock-Leighton solar dynamo model with a solar-like rotation law. Methods. As a first step, only vertical pumping has been considered through the inclusion of a radial diamagnetic term in the induction equation. In the second step, a latitudinal pumping term was included and then, a near-surface shear was included. Results. The results reveal the importance of the pumping mechanism in solving current limitations in mean field dynamo modeling, such as the storage of the magnetic flux and the latitudinal distribution of the sunspots. If a meridional flow is assumed to be present only in the upper part of the convective zone, it is the full turbulent pumping that regulates both the period of the solar cycle and the latitudinal distribution of the sunspot activity. In models that consider shear near the surface, a second shell of toroidal field is generated above r = 0.95 R(circle dot) at all latitudes. If the full pumping is also included, the polar toroidal fields are efficiently advected inwards, and the toroidal magnetic activity survives only at the observed latitudes near the equator. With regard to the parity of the magnetic field, only models that combine turbulent pumping with near-surface shear always converge to the dipolar parity. Conclusions. This result suggests that, under the Babcock-Leighton approach, the equartorward motion of the observed magnetic activity is governed by the latitudinal pumping of the toroidal magnetic field rather than by a large scale coherent meridional flow. Our results support the idea that the parity problem is related to the quadrupolar imprint of the meridional flow on the poloidal component of the magnetic field and the turbulent pumping positively contributes to wash out this imprint.
Resumo:
We present a re-analysis of the Geneva-Copenhagen survey, which benefits from the infrared flux method to improve the accuracy of the derived stellar effective temperatures and uses the latter to build a consistent and improved metallicity scale. Metallicities are calibrated on high-resolution spectroscopy and checked against four open clusters and a moving group, showing excellent consistency. The new temperature and metallicity scales provide a better match to theoretical isochrones, which are used for a Bayesian analysis of stellar ages. With respect to previous analyses, our stars are on average 100 K hotter and 0.1 dex more metal rich, which shift the peak of the metallicity distribution function around the solar value. From Stromgren photometry we are able to derive for the first time a proxy for [alpha/Fe] abundances, which enables us to perform a tentative dissection of the chemical thin and thick disc. We find evidence for the latter being composed of an old, mildly but systematically alpha-enhanced population that extends to super solar metallicities, in agreement with spectroscopic studies. Our revision offers the largest existing kinematically unbiased sample of the solar neighbourhood that contains full information on kinematics, metallicities, and ages and thus provides better constraints on the physical processes relevant in the build-up of the Milky Way disc, enabling a better understanding of the Sun in a Galactic context.
Resumo:
Context. Precise S abundances are important in the study of the early chemical evolution of the Galaxy. In particular the site of the formation remains uncertain because, at low metallicity, the trend of this alpha-element versus [Fe/H] remains unclear. Moreover, although sulfur is not bound significantly in dust grains in the ISM, it seems to behave differently in DLAs and old metal-poor stars. Aims. We attempt a precise measurement of the S abundance in a sample of extremely metal-poor stars observed with the ESO VLT equipped with UVES, taking into account NLTE and 3D effects. Methods. The NLTE profiles of the lines of multiplet 1 of S I were computed with a version of the program MULTI, including opacity sources from ATLAS9 and based on a new model atom for S. These profiles were fitted to the observed spectra. Results. We find that sulfur in EMP stars behaves like the other alpha-elements, with [S/Fe] remaining approximately constant below [Fe/H] = -3. However, [S/Mg] seems to decrease slightly with increasing [Mg/H]. The overall abundance patterns of O, Na, Mg, Al, S, and K are most closely matched by the SN model yields by Heger & Woosley. The [S/Zn] ratio in EMP stars is solar, as also found in DLAs. We derive an upper limit to the sulfur abundance [S/Fe] < +0.5 for the ultra metal-poor star CS 22949-037. This, along with a previously reported measurement of zinc, argues against the conjecture that the light-element abundance pattern of this star (and by analogy, the hyper iron-poor stars HE 0107-5240 and HE 1327-2326) would be due to dust depletion.
Resumo:
The growing interest in solar twins is motivated by the possibility of comparing them directly to the Sun. To carry on this kind of analysis, we need to know their physical characteristics with precision. Our first objective is to use asteroseismology and interferometry on the brightest of them: 18 Sco. We observed the star during 12 nights with HARPS for seismology and used the PAVO beam-combiner at CHARA for interferometry. An average large frequency separation 134.4+/-0.3 mu Hz and angular and linear radiuses of 0.6759 +/- 0.0062 mas and 1.010 +/- 0.009 R(circle dot) were estimated. We used these values to derive the mass of the star, 1.02 +/- 0.03 M(circle dot).
Resumo:
Aims. We determine the age and mass of the three best solar twin candidates in open cluster M 67 through lithium evolutionary models. Methods. We computed a grid of evolutionary models with non-standard mixing at metallicity [Fe/H] = 0.01 with the Toulouse-Geneva evolution code for a range of stellar masses. We estimated the mass and age of 10 solar analogs belonging to the open cluster M 67. We made a detailed study of the three solar twins of the sample, YPB637, YPB1194, and YPB1787. Results. We obtained a very accurate estimation of the mass of our solar analogs in M 67 by interpolating in the grid of evolutionary models. The three solar twins allowed us to estimate the age of the open cluster, which is 3.87(-0.66)(+0.55) Gyr, which is better constrained than former estimates. Conclusions. Our results show that the 3 solar twin candidates have one solar mass within the errors and that M 67 has a solar age within the errors, validating its use as a solar proxy. M 67 is an important cluster when searching for solar twins.
Resumo:
Context. The formation of ultra-compact dwarf galaxies (UCDs) is believed to be driven by interaction, and UCDs are abundant in the cores of galaxy clusters, environments that mark the end-point of galaxy evolution. Nothing is known about the properties of UCDs in compact groups of galaxies, environments where most of galaxy evolution and interaction is believed to occur and where UCDs in an intermediate stage in their evolution may be expected. Aims. The main goal of this study is to detect and characterize, for the first time, the UCD population of compact groups of galaxies. For that, two nearby groups in different evolutionary stages, HCG22 and HCG90, were targeted. Methods. We selected about 40 UCD candidates from pre-existing photometry of both groups, and obtained spectra of these candidates using the VLT FORS2 instrument in MXU mode. Archival HST/ACS imaging was used to measure their structural parameters. Results. We detect 16 and 5 objects belonging to HCG22 and HCG90, respectively, covering the magnitude range -10.0 > M(R) > -11.5 mag. Their integrated colours are consistent with old ages covering a broad range in metallicities (metallicities confirmed by the spectroscopic measurements). Photometric mass estimates put 4 objects in HCG90 and 9 in HCG22 in the mass range of UCDs (> 2 x 10(6) M(circle dot)) for an assumed age of 12Gyr. These UCDs are on average 2-3 times larger than the typical size of Galactic GCs, covering a range of 2 less than or similar to r(h) less than or similar to 21 pc. The UCDs in HCG22 are more concentrated around the central galaxy than in HCG90, at the 99% confidence level. They cover a broad range in [alpha/Fe] abundances from sub-to super-solar. The spectra of 3 UCDs (2 in HCG22, 1 in HCG90) show tentative evidence of intermediate age stellar populations. The clearest example is the largest and most massive UCD (similar to 10(7) M(circle dot)) in our sample, which is detected in HCG22. Its properties are most consistent with a stripped dwarf galaxy nucleus. We calculate the specific frequency (S(N)) of UCDs for both groups, finding that HCG22 has about three times higher S(N) than HCG90. Conclusions. The ensemble properties of the detected UCDs supports two co-existing formation channels: a star cluster origin (low-luminosity, compact sizes, old ages, super-solar alpha/Fe), and an origin as tidally stripped dwarf nuclei (more extended and younger stellar populations). Our results imply that the UCDs detected in both groups do not, in their majority, originate from relatively recent galaxy interactions. Most of the detected UCDs have likely been brought into the group along with their host galaxies.
Resumo:
We announce the discovery of the transiting planet CoRoT-13b. Ground-based follow-up in CFHT and IAC80 confirmed CoRoT's observations. The mass of the planet was measured with the HARPS spectrograph and the properties of the host star were obtained analyzing HIRES spectra from the Keck telescope. It is a hot Jupiter-like planet with an orbital period of 4.04 days, 1.3 Jupiter masses, 0.9 Jupiter radii, and a density of 2.34 g cm(-3). It orbits a G0V star with T(eff) = 5 945 K, M(*) = 1.09 M(circle dot), R(*) = 1.01 R(circle dot), solar metallicity, a lithium content of +1.45 dex, and an estimated age of between 0.12 and 3.15 Gyr. The lithium abundance of the star is consistent with its effective temperature, activity level, and age range derived from the stellar analysis. The density of the planet is extreme for its mass, implies that heavy elements are present with a mass of between about 140 and 300 M(circle plus).
Resumo:
Aims. Solar colors have been determined on the uvby-beta photometric system to test absolute solar fluxes, to examine colors predicted by model atmospheres as a function of stellar parameters (T(eff), log g, [Fe/H]), and to probe zero-points of T(eff) and metallicity scales. Methods. New uvby-beta photometry is presented for 73 solar-twin candidates. Most stars of our sample have also been observed spectroscopically to obtain accurate stellar parameters. Using the stars that most closely resemble the Sun, and complementing our data with photometry available in the literature, the solar colors on the uvby-beta system have been inferred. Our solar colors are compared with synthetic solar colors computed from absolute solar spectra and from the latest Kurucz (ATLAS9) and MARCS model atmospheres. The zero-points of different T(eff) and metallicity scales are verified and corrections are proposed. Results. Our solar colors are (b - y)(circle dot) = 0.4105 +/- 0.0015, m(1,circle dot) = 0.2122 +/- 0.0018, c(1,circle dot) = 0.3319 +/- 0.0054, and beta(circle dot) = 2.5915 +/- 0.0024. The (b - y)(circle dot) and m(1,circle dot) colors obtained from absolute spectrophotometry of the Sun agree within 3-sigma with the solar colors derived here when the photometric zero-points are determined from either the STIS HST observations of Vega or an ATLAS9 Vega model, but the c(1,circle dot) and beta(circle dot) synthetic colors inferred from absolute solar spectra agree with our solar colors only when the zero-points based on the ATLAS9 model are adopted. The Kurucz solar model provides a better fit to our observations than the MARCS model. For photometric values computed from the Kurucz models, (b - y)(circle dot) and m(1,circle dot) are in excellent agreement with our solar colors independently of the adopted zero-points, but for c(1,circle dot) and beta circle dot agreement is found only when adopting the ATLAS9 zero-points. The c(1,circle dot) color computed from both the Kurucz and MARCS models is the most discrepant, probably revealing problems either with the models or observations in the u band. The T(eff) calibration of Alonso and collaborators has the poorest performance (similar to 140 K off), while the relation of Casagrande and collaborators is the most accurate (within 10 K). We confirm that the Ramirez & Melendez uvby metallicity calibration, recommended by Arnadottir and collaborators to obtain [Fe/H] in F, G, and K dwarfs, needs a small (similar to 10%) zero-point correction to place the stars and the Sun on the same metallicity scale. Finally, we confirm that the c(1) index in solar analogs has a strong metallicity sensitivity.