995 resultados para Soil acidity--New Jersey--Mercer County--Maps.
Resumo:
A eficiência da calagem superficial pode ser melhorada por meio de compostos orgânicos hidrossolúveis liberados por resíduos vegetais. No entanto, não se sabe se os teores desses compostos nos resíduos das culturas podem ser modificados pela aplicação de calcário e gesso em superfície. O presente trabalho objetivou avaliar os efeitos das aplicações de calcário e gesso em superfície sobre os teores de cátions solúveis nos resíduos vegetais das culturas de arroz, feijão e aveia-preta. O experimento foi realizado em um Latossolo Vermelho distroférrico de Botucatu (SP). O delineamento foi de blocos casualizados com parcelas subdivididas e quatro repetições. As parcelas foram constituídas por quatro doses de calcário dolomítico (0, 1.100, 2.700 e 4.300 kg ha-1) e as subparcelas, pela aplicação ou não de 2.100 kg ha-1 de gesso agrícola. Para as culturas de verão foi utilizado esquema de parcela subsubdividida. As subsubparcelas foram constituídas por dois cultivares de arroz de terras altas (Caiapó e IAC 202), no ano agrícola 2002/03, e dois cultivares de feijão (Pérola e Carioca), em 2003/04. A aveia-preta foi cultivada no inverno dos dois anos, utilizando apenas o cultivar Comum. Os teores de cátions solúveis na parte aérea das culturas de arroz, feijão e aveia-preta foram alterados pela aplicação de calcário e gesso em superfície. A gessagem em superfície aumentou os teores solúveis de Ca e reduziu o de Mg na parte aérea das culturas, principalmente nas primeiras safras após a aplicação. A calagem aumentou os teores de cátions solúveis na parte aérea de todas as culturas. As culturas do feijão e da aveia-preta apresentaram maiores teores de cátions solúveis nos resíduos da parte aérea, avaliados no florescimento.
Resumo:
Conduziram-se dois experimentos em laboratório avaliar o efeito da palha da cana- de-açúcar na acidez do solo. A palha da cana foi adicionada nas doses de 0, 20, 40, e 76 g kg-1 na superfície de um latossolo roxo distrófico acondicionado em colunas de PVC. O solo foi incubado a capacidade de campo durante 0, 7, 14, 45, e 90 dias. Após cada incubação, o solo das colunas foram subdividido e amostrado nas seguintes frações 0-5, 5-10, 10-15, 15-20, e 20-25 cm. Com o aumento da dose da palha da cana verificou-se aumento do pH CaCl2 do solo e decréscimo do alumínio trocável até a camada de 15 cm de solo da coluna de PVC. A contribuição de compostos orgânicos para a destoxificação do Al aumentou com o acréscimo das doses da palha da cana. O crescimento da raiz das plantas trigo usadas como planta indicadora aumentou com o acréscimo das doses da palha de cana. O máximo de crescimento da raiz foi até a camada de 15 cm de solo depois de oito dias para a maior dose de palha da cana-de-açúcar.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Numa área situada no município de Lavras, MG, o desmatamento realizado há cerca de dez anos propiciou a formação de uma comunidade infestante dominada por Pteridium aquilium (L.) Khun., te ndo como codominantes Imperara brasiliensis Trin. e Andropogon bicornis L.. Como fatores que mantém esta comu nidade devem ser considerados: a) as queimadas intermiten te s; b) a acidez do solo; c) a alta percentagem de saturação de aluminio ; d) a ação fitotóxica do próprio P. aquilinum; e) a falta de palatabilidade das espécies dominantes.
Resumo:
In the present study, the composition of essential oil of leaves and inflorescences of jambu (Spilanthes oleracea. Jambuarana), under organic manuring and mineral fertilization, was stuhed. Jambu plants show important chemical properties and their production has been addressed for the extraction of the essential oils for cosmetics industries, due to their pharmacolopcal properties. The experimental area of treatments contained urea as mineral fertilizer (120 g m2), applied twice and organic fertilizer (8 kg m2), applied at the planting. Jambu leaves and flowers were harvested twice: the first at 90 days after seedling transplantation and at the opening of the flower buds. Branches were cut at 7 cm from the soil, thus new branches can bud for the accomplishment of the second crop which happened 40 days after the re-budhng. The essential oil was analyzed by gas chromatography coupled with mass-spectrometry. According to our results the most representative compounds were trans-caryophyllene, germacrene-D, 1-dodecene, spathulenol and spilanthol (a compound presenting anesthetic properties) occurring in inflorescences. Fertilization procedure does not affect the content and the quality of the essential oil in Jambu plants. © 2012 Academic Journals Inc.
Resumo:
Soil acidity and low natural fertility are the main problems for grain production in Brazilian 'cerrado'. Although lime has been the most applied source for soil correction, silicate may be an alternative material due to its lower solubility and Si supply, which is beneficial to several crops. This work aimed to evaluate the efficiency of superficial liming and calcium/magnesium silicate application on soil chemical attributes, plant nutrition, yield components and final yield of a soybean/white oat/maize/bean rotation under no-tillage system in a dry-winter region. The experiment was conducted under no tillage system in a deep acid clayey Rhodic Hapludox, Botucatu-SP, Brazil. The design was the completely randomized block with sixteen replications. Treatments consisted of two sources for soil acidity correction (dolomitic lime: ECC=90%, CaO=36% and MgO=12%; calcium/magnesium silicate: ECC=80%, CaO=34%, MgO=10% and SiO2=22%) applied in October 2006 to raise base saturation up to 70% and a control, with no soil correction. Soybean and white oat were sown in 2006/2007 as the main crop and off-season, respectively. Maize and bean were cropped in the next year (2007/2008). Products from silicate dissociation reach deeper soil layers after 18months from the application, compared to liming. Additionally, silicate is more efficient than lime to increasing phosphorus availability and reducing toxic aluminum. Such benefits in soil chemical attributes were only evidenced during bean cropping, when grain yield was higher after silicate application comparatively to liming. Both correction sources were improved mineral nutrition of all the other crops, mainly Ca and Mg levels and agronomical characteristics, reflecting in higher yield. © 2012 Elsevier B.V.
Resumo:
Pós-graduação em Agronomia (Produção Vegetal) - FCAV
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The use of sewage sludge is a practice highly promising for the development of sustainable agricultural systems. The objective of this study was to assess the improvement in soil fertility management strategies on different sewage sludge and mineral nitrogen after seven application of this residue. The experiment was carried at the Sao Manuel Experimental Farm belonging to the faculty of Agronomic Sciences of UNESP, Botucatu, located in the county of Sao Manuel. It was adopted the experimental design in a randomized blocks consisting of six treatments and five repetitions defined as follows: T0 - without nitrogen fertilizer, T1 - mineral fertilizer nitrogen according to the crop needs, T2 - 50% nitrogen from sewage sludge and 50% in the form of chemical fertilizer, T3 - 100% of nitrogen recommended by the culture, from sewage sludge, T4 - 150% of nitrogen recommended by the culture, from sewage sludge and T5 - 200% of the nitrogen from the sewage sludge. It has done seven application of sewage sludge in crop ( year 1 - sunflower, year 2 sunflower, year 3 - oats and bean, year 4 - triticale and sunflower, year 5 - wheat) and the first three applications were treated with sewage sludge and the other applications were composted sludge. In the depth 0-20 cm, the sewage sludge promoted an increase in levels of organic matter, P, S, H+Al, CEC and decreased in soil pH. In the depth of 20 to 40 cm the sewage sludge promoted a decrease in pH and increase in soil organic matter, P, H+Al, K, Ca, SB, CEC and S. Mineral N influence the increase in the depth S of 20-40 cm.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
"How large a sample is needed to survey the bird damage to corn in a county in Ohio or New Jersey or South Dakota?" Like those in the Bureau of Sport Fisheries and Wildlife and the U.S.D.A. who have been faced with a question of this sort we found only meager information on which to base an answer, whether the problem related to a county in Ohio or to one in New Jersey, or elsewhere. Many sampling methods and rates of sampling did yield reliable estimates but the judgment was often intuitive or based on the reasonableness of the resulting data. Later, when planning the next study or survey, little additional information was available on whether 40 samples of 5 ears each or 5 samples of 200 ears should be examined, i.e., examination of a large number of small samples or a small number of large samples. What information is needed to make a reliable decision? Those of us involved with the Agricultural Experiment Station regional project concerned with the problems of bird damage to crops, known as NE-49, thought we might supply an ans¬wer if we had a corn field in which all the damage was measured. If all the damage were known, we could then sample this field in various ways and see how the estimates from these samplings compared to the actual damage and pin-point the best and most accurate sampling procedure. Eventually the investigators in four states became involved in this work1 and instead of one field we were able to broaden the geographical base by examining all the corn ears in 2 half-acre sections of fields in each state, 8 sections in all. When the corn had matured well past the dough stage, damage on each corn ear was assessed, without removing the ear from the stalk, by visually estimating the percent of the kernel surface which had been destroyed and rating it in one of 5 damage categories. Measurements (by row-centimeters) of the rows of kernels pecked by birds also were made on selected ears representing all categories and all parts of each field section. These measurements provided conversion factors that, when fed into a computer, were applied to the more than 72,000 visually assessed ears. The machine now had in its memory and could supply on demand a map showing each ear, its location and the intensity of the damage.
Resumo:
Introduction 1.1 Occurrence of polycyclic aromatic hydrocarbons (PAH) in the environment Worldwide industrial and agricultural developments have released a large number of natural and synthetic hazardous compounds into the environment due to careless waste disposal, illegal waste dumping and accidental spills. As a result, there are numerous sites in the world that require cleanup of soils and groundwater. Polycyclic aromatic hydrocarbons (PAHs) are one of the major groups of these contaminants (Da Silva et al., 2003). PAHs constitute a diverse class of organic compounds consisting of two or more aromatic rings with various structural configurations (Prabhu and Phale, 2003). Being a derivative of benzene, PAHs are thermodynamically stable. In addition, these chemicals tend to adhere to particle surfaces, such as soils, because of their low water solubility and strong hydrophobicity, and this results in greater persistence under natural conditions. This persistence coupled with their potential carcinogenicity makes PAHs problematic environmental contaminants (Cerniglia, 1992; Sutherland, 1992). PAHs are widely found in high concentrations at many industrial sites, particularly those associated with petroleum, gas production and wood preserving industries (Wilson and Jones, 1993). 1.2 Remediation technologies Conventional techniques used for the remediation of soil polluted with organic contaminants include excavation of the contaminated soil and disposal to a landfill or capping - containment - of the contaminated areas of a site. These methods have some drawbacks. The first method simply moves the contamination elsewhere and may create significant risks in the excavation, handling and transport of hazardous material. Additionally, it is very difficult and increasingly expensive to find new landfill sites for the final disposal of the material. The cap and containment method is only an interim solution since the contamination remains on site, requiring monitoring and maintenance of the isolation barriers long into the future, with all the associated costs and potential liability. A better approach than these traditional methods is to completely destroy the pollutants, if possible, or transform them into harmless substances. Some technologies that have been used are high-temperature incineration and various types of chemical decomposition (for example, base-catalyzed dechlorination, UV oxidation). However, these methods have significant disadvantages, principally their technological complexity, high cost , and the lack of public acceptance. Bioremediation, on the contrast, is a promising option for the complete removal and destruction of contaminants. 1.3 Bioremediation of PAH contaminated soil & groundwater Bioremediation is the use of living organisms, primarily microorganisms, to degrade or detoxify hazardous wastes into harmless substances such as carbon dioxide, water and cell biomass Most PAHs are biodegradable unter natural conditions (Da Silva et al., 2003; Meysami and Baheri, 2003) and bioremediation for cleanup of PAH wastes has been extensively studied at both laboratory and commercial levels- It has been implemented at a number of contaminated sites, including the cleanup of the Exxon Valdez oil spill in Prince William Sound, Alaska in 1989, the Mega Borg spill off the Texas coast in 1990 and the Burgan Oil Field, Kuwait in 1994 (Purwaningsih, 2002). Different strategies for PAH bioremediation, such as in situ , ex situ or on site bioremediation were developed in recent years. In situ bioremediation is a technique that is applied to soil and groundwater at the site without removing the contaminated soil or groundwater, based on the provision of optimum conditions for microbiological contaminant breakdown.. Ex situ bioremediation of PAHs, on the other hand, is a technique applied to soil and groundwater which has been removed from the site via excavation (soil) or pumping (water). Hazardous contaminants are converted in controlled bioreactors into harmless compounds in an efficient manner. 1.4 Bioavailability of PAH in the subsurface Frequently, PAH contamination in the environment is occurs as contaminants that are sorbed onto soilparticles rather than in phase (NAPL, non aqueous phase liquids). It is known that the biodegradation rate of most PAHs sorbed onto soil is far lower than rates measured in solution cultures of microorganisms with pure solid pollutants (Alexander and Scow, 1989; Hamaker, 1972). It is generally believed that only that fraction of PAHs dissolved in the solution can be metabolized by microorganisms in soil. The amount of contaminant that can be readily taken up and degraded by microorganisms is defined as bioavailability (Bosma et al., 1997; Maier, 2000). Two phenomena have been suggested to cause the low bioavailability of PAHs in soil (Danielsson, 2000). The first one is strong adsorption of the contaminants to the soil constituents which then leads to very slow release rates of contaminants to the aqueous phase. Sorption is often well correlated with soil organic matter content (Means, 1980) and significantly reduces biodegradation (Manilal and Alexander, 1991). The second phenomenon is slow mass transfer of pollutants, such as pore diffusion in the soil aggregates or diffusion in the organic matter in the soil. The complex set of these physical, chemical and biological processes is schematically illustrated in Figure 1. As shown in Figure 1, biodegradation processes are taking place in the soil solution while diffusion processes occur in the narrow pores in and between soil aggregates (Danielsson, 2000). Seemingly contradictory studies can be found in the literature that indicate the rate and final extent of metabolism may be either lower or higher for sorbed PAHs by soil than those for pure PAHs (Van Loosdrecht et al., 1990). These contrasting results demonstrate that the bioavailability of organic contaminants sorbed onto soil is far from being well understood. Besides bioavailability, there are several other factors influencing the rate and extent of biodegradation of PAHs in soil including microbial population characteristics, physical and chemical properties of PAHs and environmental factors (temperature, moisture, pH, degree of contamination). Figure 1: Schematic diagram showing possible rate-limiting processes during bioremediation of hydrophobic organic contaminants in a contaminated soil-water system (not to scale) (Danielsson, 2000). 1.5 Increasing the bioavailability of PAH in soil Attempts to improve the biodegradation of PAHs in soil by increasing their bioavailability include the use of surfactants , solvents or solubility enhancers.. However, introduction of synthetic surfactant may result in the addition of one more pollutant. (Wang and Brusseau, 1993).A study conducted by Mulder et al. showed that the introduction of hydropropyl-ß-cyclodextrin (HPCD), a well-known PAH solubility enhancer, significantly increased the solubilization of PAHs although it did not improve the biodegradation rate of PAHs (Mulder et al., 1998), indicating that further research is required in order to develop a feasible and efficient remediation method. Enhancing the extent of PAHs mass transfer from the soil phase to the liquid might prove an efficient and environmentally low-risk alternative way of addressing the problem of slow PAH biodegradation in soil.