845 resultados para Smoker - Insulin resistance
Resumo:
Patients with polycystic ovary syndrome (PCOS) usually are obese, insulin resistant and hyperinsulinemic. The known association between leptin, obesity andinsulin action suggests that leptin may have a role in PCOS but this has only been addressed peripherally. This study was designed to assess the relationship between serum leptin and the anthropometric, metabolic and endocrine variables of obese (body mass index, BMI ³30 kg/m²) and non-obese (BMI <30 kg/m²) PCOS patients. Twenty-eight PCOS patients and 24 control women subdivided into obese and non-obese groups were evaluated. Leptin, androgens, lipids, gonadotrophins and insulin-glucose response to the oral glucose tolerance test were measured by radioimmunoassay in all participants. The assays were done all in one time. The areas under the insulin curve (AUC-I) and the glycemia curve were calculated to identify patients with insulin resistance. Mean leptin levels were not significantly higher in patients with PCOS compared to the control group (21.2 ± 10.2 vs 27.3 ± 12.4 ng/ml). Leptin levels were found to be significantly higher in the obese subgroups both in patients with PCOS (26.9 ± 9.3 vs 14.1 ± 7.0 ng/ml) and in the control group (37.3 ± 15.5 vs 12.9 ± 5.8 ng/ml). The leptin of the PCOS group was correlated with BMI (r = 0.74; P < 0.0001) and estradiol (r = 0.48; P < 0.008) and tended to be correlated with the AUC-I (r = 0.36; P = 0.05). Of the parameters which showed a correlation with leptin in PCOS, only estradiol and probably insulinemia (AUC-I) did not show a significant correlation with BMI, suggesting that the other parameters were correlated with leptin due to their correlation with BMI. Estradiol correlated with leptin in PCOS patients regardless of their weight.
Resumo:
The causes of luteal phase progesterone deficiency in polycystic ovary syndrome (PCOS) are not known. To determine the possible involvement of hyperinsulinemia in luteal phase progesterone deficiency in women with PCOS, we examined the relationship between progesterone, luteinizing hormone (LH) and insulin during the luteal phase and studied the effect of metformin on luteal progesterone levels in PCOS. Patients with PCOS (19 women aged 18-35 years) were treated with metformin (500 mg three times daily) for 4 weeks prior to the test cycle and throughout the study period, and submitted to ovulation induction with clomiphene citrate. Blood samples were collected from control (N = 5, same age range as PCOS women) and PCOS women during the late follicular (one sample) and luteal (3 samples) phases and LH, insulin and progesterone concentrations were determined. Results were analyzed by one-way analysis of variance (ANOVA), Duncan's test and Karl Pearson's coefficient of correlation (r). The endocrine study showed low progesterone level (4.9 ng/ml) during luteal phase in the PCOS women as compared with control (21.6 ng/ml). A significant negative correlation was observed between insulin and progesterone (r = -0.60; P < 0.01) and between progesterone and LH (r = -0.56; P < 0.05) concentrations, and a positive correlation (r = 0.83; P < 0.001) was observed between LH and insulin. The study further demonstrated a significant enhancement in luteal progesterone concentration (16.97 ng/ml) in PCOS women treated with metformin. The results suggest that hyperinsulinemia/insulin resistance may be responsible for low progesterone levels during the luteal phase in PCOS. The luteal progesterone level may be enhanced in PCOS by decreasing insulin secretion with metformin.
Resumo:
We evaluated the relationship of leptin with hypertension adjusted for body mass index (BMI) and/or waist circumference in a population of Japanese-Brazilian women aged > or = 30 years with centrally distributed adiposity. After excluding diabetic subjects, the study subjects - who participated in a population-based study on the prevalence of metabolic syndrome - showed prevalence rates of obesity (BMI > or = 25 kg/m²) and central adiposity (waist > or = 80 cm) of 32.0 and 37.8%, respectively. The hypertensive group (N = 162) was older, had higher BMI (24.9 ± 4.2 vs 23.3 ± 3.4 kg/m², P < 0.001), waist circumference (81.1 ± 10.1 vs 76.3 ± 8.2 cm, P < 0.001) and insulin levels (8.0 ± 6.2 vs 7.1 ± 4.9 µU/mL, P < 0.05) than the normotensive group (N = 322) and showed an unfavorable metabolic profile (higher 2-h plasma glucose, C-reactive protein and non-HDL cholesterol levels). Leptin did not differ between groups (8.2 ± 6.8 vs 7.2 ± 6.6 ng/mL, P = 0.09, for hypertensive vs normotensive, respectively) and its levels correlated significantly with anthropometric variables but not with blood pressure. Logistic regression analysis indicated that age and waist were independently associated with hypertension but not with homeostasis model assessment of insulin resistance or leptin levels. The lack of an independent association of hypertension with metabolic parameters (2-h glucose, C-reactive protein and non-HDL cholesterol) after adjustment for central adiposity suggested that visceral fat deposition may be the common mediator of the disturbances of the metabolic syndrome. Our data indicate that age and waist are major determinants of hypertension in this population of centrally obese (waist > or = 80 cm) Japanese-Brazilian women, but do not support a role for leptin in the elevation of blood pressure.
Resumo:
The aim of the present study was to analyze the frequency of K121Q polymorphism in the ENPP1 gene of Brazilian subjects according to ethnic origin and to determine its possible association with diabetes mellitus (DM) and/or diabetic complications. A cross-sectional study was conducted on 1027 type 2 DM patients and 240 anonymous blood donors (BD). Ethnicity was classified based on self-report of European and African descent. The Q allele frequency was increased in African descendant type 2 DM patients (KK = 25.9%, KQ = 48.2%, and QQ = 25.9%) and BD (KK = 22.0%, KQ = 53.8%, and QQ = 24.2%) compared to European descendant type 2 DM patients (KK = 62.7%, KQ = 33.3%, and QQ = 4.1%) and BD (KK = 61.0%, KQ = 35.6%, and QQ = 3.4%). However, there was no difference in genotype distribution or Q allele frequency between diabetic and non-diabetic subjects (European descendants: DM = 0.21 vs BD = 0.21, P = 0.966, and African descendants: DM = 0.50 vs BD = 0.51, P = 0.899). In addition, there were no differences in clinical, laboratory or insulin resistance indices among the three genotypes. The prevalence of DM complications was also similar. In conclusion, K121Q polymorphism is more common among Afro-Brazilian descendants regardless of glycemic status or insulin sensitivity indices. Likewise, insulin sensitivity and DM chronic complications appear not to be related to the polymorphism in this sample.
Resumo:
The metabolic effects of carbohydrate supplementation in mice have not been extensively studied. In rats, glucose- and fructose-rich diets induce hypertriacylglycerolemia. In the present study, we compared the metabolic responses to two monosaccharide supplementations in two murine models. Adult male Wistar rats (N = 80) and C57BL/6 mice (N = 60), after 3 weeks on a standardized diet, were submitted to dietary supplementation by gavage with glucose (G) or fructose (F) solutions (500 g/L), 8 g/kg body weight for 21 days. Glycemia was significantly higher in rats after fructose treatment (F: 7.9 vs 9.3 mM) and in mice (G: 6.5 vs 10 and F: 6.6 vs 8.9 mM) after both carbohydrate treatments. Triacylglycerolemia increased significantly 1.5 times in rats after G or F supplementation. Total cholesterol did not change with G treatment in rats, but did decrease after F supplementation (1.5 vs 1.4 mM, P < 0.05). Both supplementations in rats induced insulin resistance, as suggested by the higher Homeostasis Model Assessment Index. In contrast, mice showed significant decreases in triacylglycerol (G: 1.8 vs 1.4 and F: 1.9 vs 1.4 mM, P < 0.01) and total cholesterol levels (G and F: 2.7 vs 2.5 mM, P < 0.05) after both monosaccharide supplementations. Wistar rats and C57BL/6 mice, although belonging to the same family (Muridae), presented opposite responses to glucose and fructose supplementation regarding serum triacylglycerol, free fatty acids, and insulin levels after monosaccharide treatment. Thus, while Wistar rats developed features of plurimetabolic syndrome, C57BL/6 mice presented changes in serum biochemical profile considered to be healthier for the cardiovascular system.
Resumo:
Neuronal apoptosis occurs in the diabetic brain due to insulin deficiency or insulin resistance, both of which reduce the expression of stem cell factor (SCF). We investigated the possible involvement of the activation of the MAPK/ERK and/or AKT pathways in neuroprotection by SCF in diabetes. Male C57/B6 mice (20-25 g) were randomly divided into four groups of 10 animals each. The morphology of the diabetic brain in mice treated or not with insulin or SCF was evaluated by H&E staining and TUNEL. SCF, ERK1/2 and AKT were measured by Western blotting. In diabetic mice treated with insulin or SCF, there was fewer structural change and apoptosis in the cortex compared to untreated mice. The apoptosis rate of the normal group, the diabetic group receiving vehicle, the diabetic group treated with insulin, and the diabetic group treated with SCF was 0.54 ± 0.077%, 2.83 ± 0.156%, 1.86 ± 0.094%, and 1.78 ± 0.095% (mean ± SEM), respectively. SCF expression was lower in the diabetic cortex than in the normal cortex; however, insulin increased the expression of SCF in the diabetic cortex. Furthermore, expression of phosphorylated ERK1/2 and AKT was decreased in the diabetic cortex compared to the normal cortex. However, insulin or SCF could activate the phosphorylation of ERK1/2 and AKT in the diabetic cortex. The results suggest that SCF may protect the brain from apoptosis in diabetes and that the mechanism of this protection may, at least in part, involve activation of the ERK1/2 and AKT pathways. These results provide insight into the mechanisms by which SCF and insulin exert their neuroprotective effects in the diabetic brain.
Resumo:
The objective of this study was to identify intravascular ultrasound (IVUS), angiographic and metabolic parameters related to restenosis in patients with dysglycemia. Seventy consecutive patients (77 lesions) selected according to inclusion and exclusion criteria were evaluated by the oral glucose tolerance test and the determination of insulinemia after a successful percutaneous coronary intervention (PCI) with a bare-metal stent. The degree of insulin resistance was calculated by the homeostasis model assessment of insulin resistance (HOMA-IR). Six-month IVUS and angiogram follow-up were performed. Thirty-nine patients (55.7%) had dysglycemia. The restenosis rate in the dysglycemic group was 37.2 vs 23.5% in the euglycemic group (P = 0.299). The predictors of restenosis using bivariate analysis were reference vessel diameter (RVD): £2.93 mm (RR = 0.54; 95%CI = 0.05-0.78; P = 0.048), stent area (SA): <8.91 mm² (RR = 0.66; 95%CI = 0.24-0.85; P = 0.006), stent volume (SV): <119.75 mm³ (RR = 0.74; 95%CI = 0.38-0.89; P = 0.0005), HOMA-IR: >2.063 (RR = 0.44; 95%CI = 0.14-0.64; P = 0.027), and fasting plasma glucose (FPG): ≤108.8 mg/dL (RR = 0.53; 95%CI = 0.13-0.75; P = 0.046). SV was an independent predictor of restenosis by multivariable analysis. Dysglycemia is a common clinical condition in patients submitted to PCI. The degree of insulin resistance, FPG, RVD, SA, and SV were correlated with restenosis. SV was inversely correlated with an independent predictor of restenosis in patients treated with a bare-metal stent.
Resumo:
Silybin, a natural antioxidant, has been traditionally used against a variety of liver ailments. To investigate its effect and the underlying mechanisms of action on non-alcoholic fatty liver in rats, we used 60 4-6-week-old male Sprague-Dawley rats to establish fatty liver models by feeding a high-fat diet for 6 weeks. Hepatic enzyme, serum lipid levels, oxidative production, mitochondrial membrane fluidity, homeostasis model assessment-insulin resistance index (HOMA-IR), gene and protein expression of adiponectin, and resistin were evaluated by biochemical, reverse transcription polymerase chain reaction (RT-PCR) and Western blot analysis. Compared with the model group, silybin treatment (26.25 mg·kg-1·day-1, started at the beginning of the protocol) significantly protected against high-fat-induced fatty liver by stabilizing mitochondrial membrane fluidity, reducing serum content of alanine aminotransferase (ALT) from 450 to 304 U/L, decreasing hepatic malondialdehyde (MDA) from 1.24 to 0.93 nmol/mg protein, but increasing superoxide dismutase (SOD) and glutathione (GSH) levels from 8.03 to 9.31 U/mg protein and from 3.65 to 4.52 nmol/mg protein, respectively. Moreover, silybin enhanced the gene and protein expression of adiponectin from 215.95 to 552.40, but inhibited that of resistin from 0.118 to 0.018. Compared to rosiglitazone (0.5 mg·kg-1·day-1, started at the beginning of the protocol), silybin was effective in stabilizing mitochondrial membrane fluidity, reducing SOD as well as ALT, and regulating gene and protein expression of adiponectin (P < 0.05). These results suggest that mitochondrial membrane stabilization, oxidative stress inhibition, as well as improved insulin resistance, may be the essential mechanisms for the hepatoprotective effect of silybin on non-alcoholic fatty liver disease in rats. Silybin was more effective than rosiglitazone in terms of maintaining mitochondrial membrane fluidity and reducing oxidative stress.
Resumo:
Metabolic syndrome (MS) is a multifactorial disease involving inflammatory activity and endothelial dysfunction. The aim of the present study was to evaluate the relationship between the changes in lipoperoxidation, in immunological and biochemical parameters and nitric oxide metabolite (NOx) levels in MS patients. Fifty patients with MS (4 males/46 females) and 50 controls (3 males/47 females) were studied. Compared to control (Mann-Whitney test), MS patients presented higher serum levels (P < 0.05) of fibrinogen: 314 (185-489) vs 262 (188-314) mg/dL, C-reactive protein (CRP): 7.80 (1.10-46.50) vs 0.70 (0.16-5.20) mg/dL, interleukin-6: 3.96 (3.04-28.18) vs 3.33 (2.55-9.63) pg/mL, uric acid: 5.45 (3.15-9.65) vs 3.81 (2.70-5.90) mg/dL, and hydroperoxides: 20,689 (19,076-67,182) vs 18,636 (15,926-19,731) cpm. In contrast, they presented lower (P < 0.05) adiponectin: 7.11 (3.19-18.22) vs 12.31 (9.11-27.27) µg/mL, and NOx levels: 5.69 (2.36-8.18) vs 6.72 (5.14-12.43) µM. NOx was inversely associated (Spearman’s rank correlation) with body mass index (r = -0.2858, P = 0.0191), insulin resistance determined by the homeostasis model assessment (r = -0.2530, P = 0.0315), CRP (r = -0.2843, P = 0.0171) and fibrinogen (r = -0.2464, P = 0.0413), and positively correlated with hydroperoxides (r = 0.2506, P = 0.0408). In conclusion, NOx levels are associated with obesity, insulin resistance, oxidative stress, and inflammatory markers. The high uric acid levels together with reactive oxygen species generation may be responsible for the reduced NO levels, which in turn lead to endothelial dysfunction. The elevated plasma chemiluminescence reflecting both increased plasma oxidation and reduced antioxidant capacity may play a role in the MS mechanism.
Resumo:
The present review evaluates the role of sleep and its alteration in triggering problems of glucose metabolism and the possible involvement of adipokines in this process. A reduction in the amount of time spent sleeping has become an endemic condition in modern society, and a search of the current literature has found important associations between sleep loss and alterations of nutritional and metabolic contexts. Studies suggest that sleep loss is associated with problems in glucose metabolism and a higher risk for the development of insulin resistance and type 2 diabetes mellitus. The mechanism involved may be associated with the decreased efficacy of regulation of the hypothalamus-pituitary-adrenal axis by negative feedback mechanisms in sleep-deprivation conditions. In addition, changes in the circadian pattern of growth hormone (GH) secretion might also contribute to the alterations in glucose regulation observed during sleep loss. On the other hand, sleep deprivation stress affects adipokines - increasing tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) and decreasing leptin and adiponectin -, thus establishing a possible association between sleep-debt, adipokines and glucose metabolism. Thus, a modified release of adipokines resulting from sleep deprivation could lead to a chronic sub-inflammatory state that could play a central role in the development of insulin resistance and type 2 diabetes mellitus. Further studies are necessary to investigate the role of sleep loss in adipokine release and its relationship with glucose metabolism.
Resumo:
Obesity is strongly associated with high blood pressure, dyslipidemia, and type 2 diabetes. These conditions synergistically increase the risk of cardiovascular events. A number of central and peripheral abnormalities can explain the development or maintenance of high blood pressure in obesity. Of great interest is endothelial dysfunction, considered to be a primary risk factor in the development of hypertension. Additional mechanisms also related to endothelial dysfunction have been proposed to mediate the development of hypertension in obese individuals. These include: increase in both peripheral vasoconstriction and renal tubular sodium reabsorption, increased sympathetic activity and overactivation of both the renin-angiotensin system and the endocannabinoid system and insulin resistance. The discovery of new mechanisms regulating metabolic and vascular function and a better understanding of how vascular function can be influenced by these systems would facilitate the development of new therapies for treatment of obesity-associated hypertension.
Resumo:
We identified different lipemic and metabolic responses after the ingestion of a standardized meal by healthy adults and related them to atherosclerotic markers. Samples from 60 normolipidemic adults were collected before and after a liquid meal (40 g fat/m² body surface) at 0, 2, 4, 6, and 8 h for measurements of lipids, free fatty acids (FFA), insulin, cholesteryl ester transfer protein (CETP), autoantibodies to epitopes of oxidized LDL (oxLDL Ab), lipolytic activities, and apolipoprotein E polymorphism. Mean carotid intima-media thickness (cIMT) was determined by Doppler ultrasound. The volunteers were classified into early (N = 39) and late (N = 31) triacylglycerol (TAG) responders to the test meal. Late responders showed lower HDL cholesterol concentration at fasting and in the TAG peak, lower insulin and higher FFA concentrations compared to early responders. Multivariate regression analyses showed that mean cIMT was associated with gender (male) and age in early responders and by cholesterol levels at the 6th hour in late responders. oxLDL Ab were explained by lipoprotein lipase and negatively by hepatic lipase and oxLDL Ab (fasting period) by CETP (negative) and FFA (positive). This study is the first to identify a postalimentary insulin resistance state, combined with a reduced CETP response exclusively among late responders, and the identification of the regulators of postalimentary atherogenicity. Further research is required to determine the metabolic mechanisms described in the different postalimentary phenotypes observed in this study, as well as in different pathological states, as currently investigated in our laboratory.
Resumo:
Recent animal studies have indicated that overexpression of the elongation of long-chain fatty acids family member 6 (Elovl6) gene can cause insulin resistance and β-cell dysfunction. These are the major factors involved in the development of type 2 diabetes mellitus (T2DM). To identify the relationship between single nucleotide polymorphisms (SNP) ofELOVL6 and T2DM pathogenesis, we conducted a case-control study of 610 Han Chinese individuals (328 newly diagnosed T2DM and 282 healthy subjects). Insulin resistance and islet first-phase secretion function were evaluated by assessment of insulin resistance in a homeostasis model (HOMA-IR) and an arginine stimulation test. Three SNPs of the ELOVL6 gene were genotyped with polymerase chain reaction-restriction fragment length polymorphism, with DNA sequencing used to confirm the results. Only genotypes TT and CT of the ELOVL6 SNP rs12504538 were detected in the samples. Genotype CC was not observed. The T2DM group had a higher frequency of the C allele and the CT genotype than the control group. Subjects with the CT genotype had higher HOMA-IR values than those with the TT genotype. In addition, no statistical significance was observed between the genotype and allele frequencies of the control and T2DM groups for SNPs rs17041272 and rs6824447. The study indicated that the ELOVL6 gene polymorphism rs12504538 is associated with an increased risk of T2DM, because it causes an increase in insulin resistance.
Resumo:
Our objective was to examine associations of adult weight gain and nonalcoholic fatty liver disease (NAFLD). Cross-sectional interview data from 844 residents in Wan Song Community from October 2009 to April 2010 were analyzed in multivariate logistic regression models to examine odds ratios (OR) and 95% confidence intervals (CI) between NAFLD and weight change from age 20. Questionnaires, physical examinations, laboratory examinations, and ultrasonographic examination of the liver were carried out. Maximum rate of weight gain, body mass index, waist circumference, waist-to-hip ratio, systolic blood pressure, diastolic blood pressure, fasting blood glucose, cholesterol, triglycerides, uric acid, and alanine transaminase were higher in the NAFLD group than in the control group. HDL-C in the NAFLD group was lower than in the control group. As weight gain increased (measured as the difference between current weight and weight at age 20 years), the OR of NAFLD increased in multivariate models. NAFLD OR rose with increasing weight gain as follows: OR (95%CI) for NAFLD associated with weight gain of 20+ kg compared to stable weight (change <5 kg) was 4.23 (2.49-7.09). Significantly increased NAFLD OR were observed even for weight gains of 5-9.9 kg. For the “age 20 to highest lifetime weight” metric, the OR of NAFLD also increased as weight gain increased. For the “age 20 to highest lifetime weight” metric and the “age 20 to current weight” metric, insulin resistance index (HOMA-IR) increased as weight gain increased (P<0.001). In a stepwise multivariate regression analysis, significant association was observed between adult weight gain and NAFLD (OR=1.027, 95%CI=1.002-1.055, P=0.025). We conclude that adult weight gain is strongly associated with NAFLD.
Resumo:
Nonalcoholic fatty liver disease (NAFLD) is characterized by fat accumulation in the liver and is associated with obesity and insulin resistance. Activin A is a member of the transforming growth factor beta (TGF)-β superfamily and inhibits hepatocyte growth. Follistatin antagonizes the biological actions of activin. Exercise is an important therapeutic strategy to reduce the metabolic effects of obesity. We evaluated the pattern of activin A and follistatin liver expression in obese rats subjected to swimming exercise. Control rats (C) and high-fat (HF) diet-fed rats were randomly assigned to a swimming training group (C-Swim and HF-Swim) or a sedentary group (C-Sed and HF-Sed). Activin βA subunit mRNA expression was significantly higher in HF-Swim than in HF-Sed rats. Follistatin mRNA expression was significantly lower in C-Swim and HF-Swim than in either C-Sed or HF-Sed animals. There was no evidence of steatosis or inflammation in C rats. In contrast, in HF animals the severity of steatosis ranged from grade 1 to grade 3. The extent of liver parenchyma damage was less in HF-Swim animals, with the severity of steatosis ranging from grade 0 to grade 1. These data showed that exercise may reduce the deleterious effects of a high-fat diet on the liver, suggesting that the local expression of activin-follistatin may be involved.