990 resultados para Single-Stage Converters
Resumo:
Food lipid major components are usually analyzed by individual methodologies using diverse extractive procedures for each class. A simple and fast extractive procedure was devised for the sequential analysis of vitamin E, cholesterol, fatty acids, and total fat estimation in seafood, reducing analyses time and organic solvent consumption. Several liquid/liquid-based extractive methodologies using chlorinated and non-chlorinated organic solvents were tested. The extract obtained is used for vitamin E quantification (normal-phase HPLC with fluorescence detection), total cholesterol (normal-phase HPLC with UV detection), fatty acid profile, and total fat estimation (GC-FID), all accomplished in <40 min. The final methodology presents an adequate linearity range and sensitivity for tocopherol and cholesterol, with intra- and inter-day precisions (RSD) from 3 to 11 % for all the components. The developed methodology was applied to diverse seafood samples with positive outcomes, making it a very attractive technique for routine analyses in standard equipped laboratories in the food quality control field.
Resumo:
In this paper we survey the most relevant results for the prioritybased schedulability analysis of real-time tasks, both for the fixed and dynamic priority assignment schemes. We give emphasis to the worst-case response time analysis in non-preemptive contexts, which is fundamental for the communication schedulability analysis. We define an architecture to support priority-based scheduling of messages at the application process level of a specific fieldbus communication network, the PROFIBUS. The proposed architecture improves the worst-case messages’ response time, overcoming the limitation of the first-come-first-served (FCFS) PROFIBUS queue implementations.
Resumo:
Many-core platforms based on Network-on-Chip (NoC [Benini and De Micheli 2002]) present an emerging technology in the real-time embedded domain. Although the idea to group the applications previously executed on separated single-core devices, and accommodate them on an individual many-core chip offers various options for power savings, cost reductions and contributes to the overall system flexibility, its implementation is a non-trivial task. In this paper we address the issue of application mapping onto a NoCbased many-core platform when considering fundamentals and trends of current many-core operating systems, specifically, we elaborate on a limited migrative application model encompassing a message-passing paradigm as a communication primitive. As the main contribution, we formulate the problem of real-time application mapping, and propose a three-stage process to efficiently solve it. Through analysis it is assured that derived solutions guarantee the fulfilment of posed time constraints regarding worst-case communication latencies, and at the same time provide an environment to perform load balancing for e.g. thermal, energy, fault tolerance or performance reasons.We also propose several constraints regarding the topological structure of the application mapping, as well as the inter- and intra-application communication patterns, which efficiently solve the issues of pessimism and/or intractability when performing the analysis.
Resumo:
Graphics processors were originally developed for rendering graphics but have recently evolved towards being an architecture for general-purpose computations. They are also expected to become important parts of embedded systems hardware -- not just for graphics. However, this necessitates the development of appropriate timing analysis techniques which would be required because techniques developed for CPU scheduling are not applicable. The reason is that we are not interested in how long it takes for any given GPU thread to complete, but rather how long it takes for all of them to complete. We therefore develop a simple method for finding an upper bound on the makespan of a group of GPU threads executing the same program and competing for the resources of a single streaming multiprocessor (whose architecture is based on NVIDIA Fermi, with some simplifying assunptions). We then build upon this method to formulate the derivation of the exact worst-case makespan (and corresponding schedule) as an optimization problem. Addressing the issue of tractability, we also present a technique for efficiently computing a safe estimate of the worstcase makespan with minimal pessimism, which may be used when finding an exact value would take too long.
Resumo:
A new integrated mathematical model for the simulation of offshore wind energy conversion system performance is presented in this paper. The mathematical model considers an offshore variable-speed turbine in deep water equipped with a permanent magnet synchronous generator using full-power two-level converter, converting the energy of a variable frequency source in injected energy into the electric network with constant frequency, through a high voltage DC transmission submarine cable. The mathematical model for the drive train is a concentrate two mass model which incorporates the dynamic for the structure and tower due to the need to emulate the effects of the moving surface. Controller strategy considered is a proportional integral one. Also, pulse width modulation using space vector modulation supplemented with sliding mode is used for trigger the transistor of the converter. Finally, a case study is presented to access the system performance. © 2014 IEEE.
Resumo:
WiDom is a previously proposed prioritized medium access control protocol for wireless channels. We present a modification to this protocol in order to improve its reliability. This modification has similarities with cooperative relaying schemes, but, in our protocol, all nodes can relay a carrier wave. The preliminary evaluation shows that, under transmission errors, a significant reduction on the number of failed tournaments can be achieved.
Resumo:
Résumé I (Pratiques Pédagogiques)- Ce compte-rendu du stage réalisé pour ma deuxième année de master rapporte le résultat de l’observation des cours donnés à trois élèves de niveaux différents par le professeur de harpe de l’Ecole de Musique « Nossa Senhora do Cabo » à Linda-a-Velha, commune de Oeiras, située près de Lisbonne. Grâce à l’activité du professeur, et par le suivi de l’évolution de ses élèves tout au long de l’année scolaire 2012-2013, tant sur le plan technique que sur le plan musical, j’ai pu participer à toutes les étapes de leur apprentissage et retrouver quelques principes pédagogiques fondamentaux. Ainsi, j’ai constaté la nécessité d’une organisation didactique solide dans la définition d’objectifs, la planification du travail, le choix des méthodes d’étude, mais souple par la régulation des rythmes d’apprentissage et des techniques d’acquisition. La métacognition est aussi une notion composante essentielle de la pratique du professeur, dont un des grands objectifs est de développer chez ses élèves la capacité de se prendre en charge seul. J’ai également apprécié l’importance de l’aspect relationnel intrinsèque à toute situation d’apprentissage, ainsi que celle de la connaissance des théories de la motivation, atout important permettant d’agir au niveau psychologique sur les élèves et d’obtenir à plus ou moins long terme des changements comportementaux influents sur la qualité de ces apprentissages. J’ai enfin essayé de dégager différents types d’approches pédagogiques possibles, parmi les stratégies observées chez le professeur, ainsi que d’après quelques éléments de réflexion personnelle.
Resumo:
This paper presents a single precision floating point arithmetic unit with support for multiplication, addition, fused multiply-add, reciprocal, square-root and inverse squareroot with high-performance and low resource usage. The design uses a piecewise 2nd order polynomial approximation to implement reciprocal, square-root and inverse square-root. The unit can be configured with any number of operations and is capable to calculate any function with a throughput of one operation per cycle. The floatingpoint multiplier of the unit is also used to implement the polynomial approximation and the fused multiply-add operation. We have compared our implementation with other state-of-the-art proposals, including the Xilinx Core-Gen operators, and conclude that the approach has a high relative performance/area efficiency. © 2014 Technical University of Munich (TUM).
Resumo:
Joining of components with structural adhesives is currently one of the most widespread techniques for advanced structures (e.g., aerospace or aeronautical). Adhesive bonding does not involve drilling operations and it distributes the load over a larger area than mechanical joints. However, peak stresses tend to develop near the overlap edges because of differential straining of the adherends and load asymmetry. As a result, premature failures can be expected, especially for brittle adhesives. Moreover, bonded joints are very sensitive to the surface treatment of the material, service temperature, humidity and ageing. To surpass these limitations, the combination of adhesive bonding with spot-welding is a choice to be considered, adding a few advantages like superior static strength and stiffness, higher peeling and fatigue strength and easier fabrication, as fixtures during the adhesive curing are not needed. The experimental and numerical study presented here evaluates hybrid spot-welded/bonded single-lap joints in comparison with the purely spot-welded and bonded equivalents. A parametric study on the overlap length (LO) allowed achieving different strength advantages, up to 58% compared to spot-welded joints and 24% over bonded joints. The Finite Element Method (FEM) and Cohesive Zone Models (CZM) for damage growth were also tested in Abaqus® to evaluate this technique for strength prediction, showing accurate estimations for all kinds of joints.
Resumo:
In this study, an experimental investigation into the shear strength behaviour of aluminium alloy single-lap adhesive joints was carried out in order to understand the effect of temperature on the strength of adhesively bonding joints. Single lap joints (SLJs) were fabricated and tested at RT and high temperatures (100ºC, 125ºC, 150ºC, 175ºC and 200ºC). Results showed that the failure loads of the single-lap joint test specimens vary with temperature and this needs to be considered in any design procedure. It is shown that, although the tensile stress decreased with temperature, the lap-shear strength of the adhesive increased with increasing of temperature up to the glass transition of the adhesive (Tg) and decreased for tests above the Tg.
Resumo:
Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para a obtenção do grau de Mestre em Engenharia do Ambiente
Resumo:
Adhesive bonding as a joining or repair method has a wide application in many industries. Repairs with bonded patches are often carried out to re-establish the stiffness at critical regions or spots of corrosion and/or fatigue cracks. Single and double-strap repairs (SS and DS, respectively) are a viable option for repairing. For the SS repairs, a patch is adhesively-bonded on one of the structure faces. SS repairs are easy to execute, but the load eccentricity leads to peel peak stresses at the overlap edges. DS repairs involve the use of two patches, one on each face of the structure. These are more efficient than SS repairs, due to the doubling of the bonding area and suppression of the transverse deflection of the adherends. Shear stresses also become more uniform as a result of smaller differential straining. The experimental and Finite Element (FE) study presented here for strength prediction and design optimization of bonded repairs includes SS and DS solutions with different values of overlap length (LO). The examined values of LO include 10, 20 and 30 mm. The failure strengths of the SS and DS repairs were compared with FE results by using the Abaqus® FE software. A Cohesive Zone Model (CZM) with a triangular shape in pure tensile and shear modes, including the mixed-mode possibility for crack growth, was used to simulate fracture of the adhesive layer. A good agreement was found between the experiments and the FE simulations on the failure modes, elastic stiffness and strength of the repairs, showing the effectiveness and applicability of the proposed FE technique in predicting strength of bonded repairs. Furthermore, some optimization principles were proposed to repair structures with adhesively-bonded patches that will allow repair designers to effectively design bonded repairs.
Resumo:
This paper proposes a multifunctional architecture to implement field-programmable gate array (FPGA) controllers for power converters and presents a prototype for a pulsed power generator based on a solid-state Marx topology. The massively parallel nature of reconfigurable hardware platforms provides very high processing power and fast response times allowing the implementation of many subsystems in the same device. The prototype includes the controller, a failure detection system, an interface with a safety/emergency subsystem, a graphical user interface, and a virtual oscilloscope to visualize the generated pulse waveforms, using a single FPGA. The proposed architecture employs a modular design that can be easily adapted to other power converter topologies.
Resumo:
This paper is on offshore wind energy conversion systems installed on the deep water and equipped with back-to-back neutral point clamped full-power converter, permanent magnet synchronous generator with an AC link. The model for the drive train is a five-mass model which incorporates the dynamic of the structure and the tower in order to emulate the effect of the moving surface. A three-level converter and a four-level converter are the two options with a fractional-order control strategy considered to equip the conversion system. Simulation studies are carried out to assess the quality of the energy injected into the electric grid. Finally, conclusions are presented. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
This work addresses both experimental and numerical analyses regarding the tensile behaviour of CFRP single-strap repairs. Two fundamental geometrical parameters were studied: overlap length and patch thickness. The numerical model used ABAQUS® software and a developed cohesive mixed-mode damage model adequate for ductile adhesives, and implemented within interface finite elements. Stress analyses and strength predictions were carried out. Experimental and numerical comparisons were performed on failure modes, failure load and equivalent stiffness of the repair. Good correlation was found between experimental and numerical results, showing that the proposed model can be successfully applied to bonded joints or repairs.