907 resultados para Single-Blind Method
Resumo:
Graphics processors were originally developed for rendering graphics but have recently evolved towards being an architecture for general-purpose computations. They are also expected to become important parts of embedded systems hardware -- not just for graphics. However, this necessitates the development of appropriate timing analysis techniques which would be required because techniques developed for CPU scheduling are not applicable. The reason is that we are not interested in how long it takes for any given GPU thread to complete, but rather how long it takes for all of them to complete. We therefore develop a simple method for finding an upper bound on the makespan of a group of GPU threads executing the same program and competing for the resources of a single streaming multiprocessor (whose architecture is based on NVIDIA Fermi, with some simplifying assunptions). We then build upon this method to formulate the derivation of the exact worst-case makespan (and corresponding schedule) as an optimization problem. Addressing the issue of tractability, we also present a technique for efficiently computing a safe estimate of the worstcase makespan with minimal pessimism, which may be used when finding an exact value would take too long.
Resumo:
Joining of components with structural adhesives is currently one of the most widespread techniques for advanced structures (e.g., aerospace or aeronautical). Adhesive bonding does not involve drilling operations and it distributes the load over a larger area than mechanical joints. However, peak stresses tend to develop near the overlap edges because of differential straining of the adherends and load asymmetry. As a result, premature failures can be expected, especially for brittle adhesives. Moreover, bonded joints are very sensitive to the surface treatment of the material, service temperature, humidity and ageing. To surpass these limitations, the combination of adhesive bonding with spot-welding is a choice to be considered, adding a few advantages like superior static strength and stiffness, higher peeling and fatigue strength and easier fabrication, as fixtures during the adhesive curing are not needed. The experimental and numerical study presented here evaluates hybrid spot-welded/bonded single-lap joints in comparison with the purely spot-welded and bonded equivalents. A parametric study on the overlap length (LO) allowed achieving different strength advantages, up to 58% compared to spot-welded joints and 24% over bonded joints. The Finite Element Method (FEM) and Cohesive Zone Models (CZM) for damage growth were also tested in Abaqus® to evaluate this technique for strength prediction, showing accurate estimations for all kinds of joints.
Resumo:
Adhesive bonding as a joining or repair method has a wide application in many industries. Repairs with bonded patches are often carried out to re-establish the stiffness at critical regions or spots of corrosion and/or fatigue cracks. Single and double-strap repairs (SS and DS, respectively) are a viable option for repairing. For the SS repairs, a patch is adhesively-bonded on one of the structure faces. SS repairs are easy to execute, but the load eccentricity leads to peel peak stresses at the overlap edges. DS repairs involve the use of two patches, one on each face of the structure. These are more efficient than SS repairs, due to the doubling of the bonding area and suppression of the transverse deflection of the adherends. Shear stresses also become more uniform as a result of smaller differential straining. The experimental and Finite Element (FE) study presented here for strength prediction and design optimization of bonded repairs includes SS and DS solutions with different values of overlap length (LO). The examined values of LO include 10, 20 and 30 mm. The failure strengths of the SS and DS repairs were compared with FE results by using the Abaqus® FE software. A Cohesive Zone Model (CZM) with a triangular shape in pure tensile and shear modes, including the mixed-mode possibility for crack growth, was used to simulate fracture of the adhesive layer. A good agreement was found between the experiments and the FE simulations on the failure modes, elastic stiffness and strength of the repairs, showing the effectiveness and applicability of the proposed FE technique in predicting strength of bonded repairs. Furthermore, some optimization principles were proposed to repair structures with adhesively-bonded patches that will allow repair designers to effectively design bonded repairs.
Resumo:
This work reports on an experimental and finite element method (FEM) parametric study of adhesively-bonded single and double-strap repairs on carbon-epoxy structures under buckling unrestrained compression. The influence of the overlap length and patch thickness was evaluated. This loading gains a particular significance from the additional characteristic mechanisms of structures under compression, such as fibres microbuckling, for buckling restrained structures, or global buckling of the assembly, if no transverse restriction exists. The FEM analysis is based on the use of cohesive elements including mixed-mode criteria to simulate a cohesive fracture of the adhesive layer. Trapezoidal laws in pure modes I and II were used to account for the ductility of most structural adhesives. These laws were estimated for the adhesive used from double cantilever beam (DCB) and end-notched flexure (ENF) tests, respectively, using an inverse technique. The pure mode III cohesive law was equalled to the pure mode II one. Compression failure in the laminates was predicted using a stress-based criterion. The accurate FEM predictions open a good prospect for the reduction of the extensive experimentation in the design of carbon-epoxy repairs. Design principles were also established for these repairs under buckling.
Resumo:
The structural integrity of multi-component structures is usually determined by the strength and durability of their unions. Adhesive bonding is often chosen over welding, riveting and bolting, due to the reduction of stress concentrations, reduced weight penalty and easy manufacturing, amongst other issues. In the past decades, the Finite Element Method (FEM) has been used for the simulation and strength prediction of bonded structures, by strength of materials or fracture mechanics-based criteria. Cohesive-zone models (CZMs) have already proved to be an effective tool in modelling damage growth, surpassing a few limitations of the aforementioned techniques. Despite this fact, they still suffer from the restriction of damage growth only at predefined growth paths. The eXtended Finite Element Method (XFEM) is a recent improvement of the FEM, developed to allow the growth of discontinuities within bulk solids along an arbitrary path, by enriching degrees of freedom with special displacement functions, thus overcoming the main restriction of CZMs. These two techniques were tested to simulate adhesively bonded single- and double-lap joints. The comparative evaluation of the two methods showed their capabilities and/or limitations for this specific purpose.
Resumo:
A new method is proposed to control delayed transitions towards extinction in single population theoretical models with discrete time undergoing saddle-node bifurcations. The control method takes advantage of the delaying properties of the saddle remnant arising after the bifurcation, and allows to sustain populations indefinitely. Our method, which is shown to work for deterministic and stochastic systems, could generally be applied to avoid transitions tied to one-dimensional maps after saddle-node bifurcations.
Resumo:
In this study, the tensile strength of single-lap joints (SLJs) between similar and dissimilar adherends bonded with an acrylic adhesive was evaluated experimentally and numerically. The adherend materials included polyethylene (PE), polypropylene (PP), carbon-epoxy (CFRP), and glass-polyester (GFRP) composites. The following adherend combinations were tested: PE/PE, PE/PP, PE/CFRP, PE/GFRP, PP/PP, CFRP/CFRP, and GFRP/GFRP. One of the objectives of this work was to assess the influence of the adherends stiffness on the strength of the joints since it significantly affects the peel stresses magnitude in the adhesive layer. The experimental results were also used to validate a new mixed-mode cohesive damage model developed to simulate the adhesive layer. Thus, the experimental results were compared with numerical simulations performed in ABAQUS®, including a developed mixed-mode (I+II) cohesive damage model, based on the indirect use of fracture mechanics and implemented within interface finite elements. The cohesive laws present a trapezoidal shape with an increasing stress plateau, to reproduce the behaviour of the ductile adhesive used. A good agreement was found between the experimental and numerical results.
Resumo:
This paper addresses the problem of optimal positioning of surface bonded piezoelectric patches in sandwich plates with viscoelastic core and laminated face layers. The objective is to maximize a set of modal loss factors for a given frequency range using multiobjective topology optimization. Active damping is introduced through co-located negative velocity feedback control. The multiobjective topology optimization problem is solved using the Direct MultiSearch Method. An application to a simply supported sandwich plate is presented with results for the maximization of the first six modal loss factors. The influence of the finite element mesh is analyzed and the results are, to some extent, compared with those obtained using alternative single objective optimization.
Resumo:
Brain dopamine transporters imaging by Single Emission Tomography (SPECT) with 123I-FP-CIT (DaTScanTM) has become an important tool in the diagnosis and evaluation of Parkinson syndromes.This diagnostic method allows the visualization of a portion of the striatum – where healthy pattern resemble two symmetric commas - allowing the evaluation of dopamine presynaptic system, in which dopamine transporters are responsible for dopamine release into the synaptic cleft, and their reabsorption into the nigrostriatal nerve terminals, in order to be stored or degraded. In daily practice for assessment of DaTScan TM, it is common to rely only on visual assessment for diagnosis. However, this process is complex and subjective as it depends on the observer’s experience and it is associated with high variability intra and inter observer. Studies have shown that semiquantification can improve the diagnosis of Parkinson syndromes. For semiquantification, analysis methods of image segmentation using regions of interest (ROI) are necessary. ROIs are drawn, in specific - striatum - and in nonspecific – background – uptake areas. Subsequently, specific binding ratios are calculated. Low adherence of semiquantification for diagnosis of Parkinson syndromes is related, not only with the associated time spent, but also with the need of an adapted database of reference values for the population concerned, as well as, the examination of each service protocol. Studies have concluded, that this process increases the reproducibility of semiquantification. The aim of this investigation was to create and validate a database of healthy controls for Dopamine transporters with DaTScanTM named DBRV. The created database has been adapted to the Nuclear Medicine Department’s protocol, and the population of Infanta Cristina’s Hospital located in Badajoz, Spain.
Resumo:
Bonded joints are gaining importance in many fields of manufacturing owing to a significant number of advantages to the traditional methods. The single lap joint (SLJ) is the most commonly used method. The use of material or geometric changes in SLJ reduces peel and shear peak stresses at the damage initiation sites. In this work, the effect of adherend recessing at the overlap edges on the tensile strength of SLJ, bonded with a brittle adhesive, was experimentally and numerically studied. The recess dimensions (length and depth) were optimized for different values of overlap length (LO), thus allowing the maximization of the joint’s strength by the reduction of peak stresses at the overlap edges. The effect of recessing was also investigated by a finite element (FE) analysis and cohesive zone modelling (CZM), which allowed characterizing the entire fracture process and provided joint strength predictions. For this purpose, a static FE analysis was performed in ABAQUS1 considering geometric nonlinearities. In the end, the experimental and FE results revealed the accuracy of the FE analysis in predicting the strength and also provided some design principles for the strength improvement of SLJ using a relatively simple and straightforward technique.
Resumo:
Hyperspectral remote sensing exploits the electromagnetic scattering patterns of the different materials at specific wavelengths [2, 3]. Hyperspectral sensors have been developed to sample the scattered portion of the electromagnetic spectrum extending from the visible region through the near-infrared and mid-infrared, in hundreds of narrow contiguous bands [4, 5]. The number and variety of potential civilian and military applications of hyperspectral remote sensing is enormous [6, 7]. Very often, the resolution cell corresponding to a single pixel in an image contains several substances (endmembers) [4]. In this situation, the scattered energy is a mixing of the endmember spectra. A challenging task underlying many hyperspectral imagery applications is then decomposing a mixed pixel into a collection of reflectance spectra, called endmember signatures, and the corresponding abundance fractions [8–10]. Depending on the mixing scales at each pixel, the observed mixture is either linear or nonlinear [11, 12]. Linear mixing model holds approximately when the mixing scale is macroscopic [13] and there is negligible interaction among distinct endmembers [3, 14]. If, however, the mixing scale is microscopic (or intimate mixtures) [15, 16] and the incident solar radiation is scattered by the scene through multiple bounces involving several endmembers [17], the linear model is no longer accurate. Linear spectral unmixing has been intensively researched in the last years [9, 10, 12, 18–21]. It considers that a mixed pixel is a linear combination of endmember signatures weighted by the correspondent abundance fractions. Under this model, and assuming that the number of substances and their reflectance spectra are known, hyperspectral unmixing is a linear problem for which many solutions have been proposed (e.g., maximum likelihood estimation [8], spectral signature matching [22], spectral angle mapper [23], subspace projection methods [24,25], and constrained least squares [26]). In most cases, the number of substances and their reflectances are not known and, then, hyperspectral unmixing falls into the class of blind source separation problems [27]. Independent component analysis (ICA) has recently been proposed as a tool to blindly unmix hyperspectral data [28–31]. ICA is based on the assumption of mutually independent sources (abundance fractions), which is not the case of hyperspectral data, since the sum of abundance fractions is constant, implying statistical dependence among them. This dependence compromises ICA applicability to hyperspectral images as shown in Refs. [21, 32]. In fact, ICA finds the endmember signatures by multiplying the spectral vectors with an unmixing matrix, which minimizes the mutual information among sources. If sources are independent, ICA provides the correct unmixing, since the minimum of the mutual information is obtained only when sources are independent. This is no longer true for dependent abundance fractions. Nevertheless, some endmembers may be approximately unmixed. These aspects are addressed in Ref. [33]. Under the linear mixing model, the observations from a scene are in a simplex whose vertices correspond to the endmembers. Several approaches [34–36] have exploited this geometric feature of hyperspectral mixtures [35]. Minimum volume transform (MVT) algorithm [36] determines the simplex of minimum volume containing the data. The method presented in Ref. [37] is also of MVT type but, by introducing the notion of bundles, it takes into account the endmember variability usually present in hyperspectral mixtures. The MVT type approaches are complex from the computational point of view. Usually, these algorithms find in the first place the convex hull defined by the observed data and then fit a minimum volume simplex to it. For example, the gift wrapping algorithm [38] computes the convex hull of n data points in a d-dimensional space with a computational complexity of O(nbd=2cþ1), where bxc is the highest integer lower or equal than x and n is the number of samples. The complexity of the method presented in Ref. [37] is even higher, since the temperature of the simulated annealing algorithm used shall follow a log( ) law [39] to assure convergence (in probability) to the desired solution. Aiming at a lower computational complexity, some algorithms such as the pixel purity index (PPI) [35] and the N-FINDR [40] still find the minimum volume simplex containing the data cloud, but they assume the presence of at least one pure pixel of each endmember in the data. This is a strong requisite that may not hold in some data sets. In any case, these algorithms find the set of most pure pixels in the data. PPI algorithm uses the minimum noise fraction (MNF) [41] as a preprocessing step to reduce dimensionality and to improve the signal-to-noise ratio (SNR). The algorithm then projects every spectral vector onto skewers (large number of random vectors) [35, 42,43]. The points corresponding to extremes, for each skewer direction, are stored. A cumulative account records the number of times each pixel (i.e., a given spectral vector) is found to be an extreme. The pixels with the highest scores are the purest ones. N-FINDR algorithm [40] is based on the fact that in p spectral dimensions, the p-volume defined by a simplex formed by the purest pixels is larger than any other volume defined by any other combination of pixels. This algorithm finds the set of pixels defining the largest volume by inflating a simplex inside the data. ORA SIS [44, 45] is a hyperspectral framework developed by the U.S. Naval Research Laboratory consisting of several algorithms organized in six modules: exemplar selector, adaptative learner, demixer, knowledge base or spectral library, and spatial postrocessor. The first step consists in flat-fielding the spectra. Next, the exemplar selection module is used to select spectral vectors that best represent the smaller convex cone containing the data. The other pixels are rejected when the spectral angle distance (SAD) is less than a given thresh old. The procedure finds the basis for a subspace of a lower dimension using a modified Gram–Schmidt orthogonalizati on. The selected vectors are then projected onto this subspace and a simplex is found by an MV T pro cess. ORA SIS is oriented to real-time target detection from uncrewed air vehicles using hyperspectral data [46]. In this chapter we develop a new algorithm to unmix linear mixtures of endmember spectra. First, the algorithm determines the number of endmembers and the signal subspace using a newly developed concept [47, 48]. Second, the algorithm extracts the most pure pixels present in the data. Unlike other methods, this algorithm is completely automatic and unsupervised. To estimate the number of endmembers and the signal subspace in hyperspectral linear mixtures, the proposed scheme begins by estimating sign al and noise correlation matrices. The latter is based on multiple regression theory. The signal subspace is then identified by selectin g the set of signal eigenvalue s that best represents the data, in the least-square sense [48,49 ], we note, however, that VCA works with projected and with unprojected data. The extraction of the end members exploits two facts: (1) the endmembers are the vertices of a simplex and (2) the affine transformation of a simplex is also a simplex. As PPI and N-FIND R algorithms, VCA also assumes the presence of pure pixels in the data. The algorithm iteratively projects data on to a direction orthogonal to the subspace spanned by the endmembers already determined. The new end member signature corresponds to the extreme of the projection. The algorithm iterates until all end members are exhausted. VCA performs much better than PPI and better than or comparable to N-FI NDR; yet it has a computational complexity between on e and two orders of magnitude lower than N-FINDR. The chapter is structure d as follows. Section 19.2 describes the fundamentals of the proposed method. Section 19.3 and Section 19.4 evaluate the proposed algorithm using simulated and real data, respectively. Section 19.5 presents some concluding remarks.
Resumo:
This paper introduces a new hyperspectral unmixing method called Dependent Component Analysis (DECA). This method decomposes a hyperspectral image into a collection of reflectance (or radiance) spectra of the materials present in the scene (endmember signatures) and the corresponding abundance fractions at each pixel. DECA models the abundance fractions as mixtures of Dirichlet densities, thus enforcing the constraints on abundance fractions imposed by the acquisition process, namely non-negativity and constant sum. The mixing matrix is inferred by a generalized expectation-maximization (GEM) type algorithm. This method overcomes the limitations of unmixing methods based on Independent Component Analysis (ICA) and on geometrical based approaches. DECA performance is illustrated using simulated and real data.
Resumo:
Hyperspectral unmixing methods aim at the decomposition of a hyperspectral image into a collection endmember signatures, i.e., the radiance or reflectance of the materials present in the scene, and the correspondent abundance fractions at each pixel in the image. This paper introduces a new unmixing method termed dependent component analysis (DECA). This method is blind and fully automatic and it overcomes the limitations of unmixing methods based on Independent Component Analysis (ICA) and on geometrical based approaches. DECA is based on the linear mixture model, i.e., each pixel is a linear mixture of the endmembers signatures weighted by the correspondent abundance fractions. These abundances are modeled as mixtures of Dirichlet densities, thus enforcing the non-negativity and constant sum constraints, imposed by the acquisition process. The endmembers signatures are inferred by a generalized expectation-maximization (GEM) type algorithm. The paper illustrates the effectiveness of DECA on synthetic and real hyperspectral images.
Resumo:
Sustainable Construction, Materials and Practice, p. 426-432
Resumo:
We show here a simplified RT-PCR for identification of dengue virus types 1 and 2. Five dengue virus strains, isolated from Brazilian patients, and yellow fever vaccine 17DD as a negative control, were used in this study. C6/36 cells were infected and supernatants were collected after 7 days. The RT-PCR, done in a single reaction vessel, was carried out following a 1/10 dilution of virus in distilled water or in a detergent mixture containing Nonidet P40. The 50 µl assay reaction mixture included 50 pmol of specific primers amplifying a 482 base pair sequence for dengue type 1 and 210 base pair sequence for dengue type 2. In other assays, we used dengue virus consensus primers having maximum sequence similarity to the four serotypes, amplifying a 511 base pair sequence. The reaction mixture also contained 0.1 mM of the four deoxynucleoside triphosphates, 7.5 U of reverse transcriptase, 1U of thermostable Taq DNA polymerase. The mixture was incubated for 5 minutes at 37ºC for reverse transcription followed by 30 cycles of two-step PCR amplification (92ºC for 60 seconds, 53ºC for 60 seconds) with slow temperature increment. The PCR products were subjected to 1.7% agarose gel electrophoresis and visualized by UV light after staining with ethidium bromide solution. Low virus titer around 10 3, 6 TCID50/ml was detected by RT-PCR for dengue type 1. Specific DNA amplification was observed with all the Brazilian dengue strains by using dengue virus consensus primers. As compared to other RT-PCRs, this assay is less laborious, done in a shorter time, and has reduced risk of contamination