934 resultados para Simplex. CPLEXR. Parallel Efficiency. Parallel Scalability. Linear Programming
Resumo:
In models of complicated physical-chemical processes operator splitting is very often applied in order to achieve sufficient accuracy as well as efficiency of the numerical solution. The recently rediscovered weighted splitting schemes have the great advantage of being parallelizable on operator level, which allows us to reduce the computational time if parallel computers are used. In this paper, the computational times needed for the weighted splitting methods are studied in comparison with the sequential (S) splitting and the Marchuk-Strang (MSt) splitting and are illustrated by numerical experiments performed by use of simplified versions of the Danish Eulerian model (DEM).
Resumo:
Large scale air pollution models are powerful tools, designed to meet the increasing demand in different environmental studies. The atmosphere is the most dynamic component of the environment, where the pollutants can be moved quickly on far distnce. Therefore the air pollution modeling must be done in a large computational domain. Moreover, all relevant physical, chemical and photochemical processes must be taken into account. In such complex models operator splitting is very often applied in order to achieve sufficient accuracy as well as efficiency of the numerical solution. The Danish Eulerian Model (DEM) is one of the most advanced such models. Its space domain (4800 × 4800 km) covers Europe, most of the Mediterian and neighboring parts of Asia and the Atlantic Ocean. Efficient parallelization is crucial for the performance and practical capabilities of this huge computational model. Different splitting schemes, based on the main processes mentioned above, have been implemented and tested with respect to accuracy and performance in the new version of DEM. Some numerical results of these experiments are presented in this paper.
Resumo:
We propose a bridge between two important parallel programming paradigms: data parallelism and communicating sequential processes (CSP). Data parallel pipelined architectures obtained with the Alpha language can be embedded in a control intensive application expressed in CSP-based Handel formalism. The interface is formally defined from the semantics of the languages Alpha and Handel. This work will ease the design of compute intensive applications on FPGAs.
Resumo:
Both the (5,3) counter and (2,2,3) counter multiplication techniques are investigated for the efficiency of their operation speed and the viability of the architectures when implemented in a fast bipolar ECL technology. The implementation of the counters in series-gated ECL and threshold logic are contrasted for speed, noise immunity and complexity, and are critically compared with the fastest practical design of a full-adder. A novel circuit technique to overcome the problems of needing high fan-in input weights in threshold circuits through the use of negative weighted inputs is presented. The authors conclude that a (2,2,3) counter based array multiplier implemented in series-gated ECL should enable a significant increase in speed over conventional full adder based array multipliers.
Resumo:
In a world where massive amounts of data are recorded on a large scale we need data mining technologies to gain knowledge from the data in a reasonable time. The Top Down Induction of Decision Trees (TDIDT) algorithm is a very widely used technology to predict the classification of newly recorded data. However alternative technologies have been derived that often produce better rules but do not scale well on large datasets. Such an alternative to TDIDT is the PrismTCS algorithm. PrismTCS performs particularly well on noisy data but does not scale well on large datasets. In this paper we introduce Prism and investigate its scaling behaviour. We describe how we improved the scalability of the serial version of Prism and investigate its limitations. We then describe our work to overcome these limitations by developing a framework to parallelise algorithms of the Prism family and similar algorithms. We also present the scale up results of a first prototype implementation.
Resumo:
Disturbances of arbitrary amplitude are superposed on a basic flow which is assumed to be steady and either (a) two-dimensional, homogeneous, and incompressible (rotating or non-rotating) or (b) stably stratified and quasi-geostrophic. Flow over shallow topography is allowed in either case. The basic flow, as well as the disturbance, is assumed to be subject neither to external forcing nor to dissipative processes like viscosity. An exact, local ‘wave-activity conservation theorem’ is derived in which the density A and flux F are second-order ‘wave properties’ or ‘disturbance properties’, meaning that they are O(a2) in magnitude as disturbance amplitude a [rightward arrow] 0, and that they are evaluable correct to O(a2) from linear theory, to O(a3) from second-order theory, and so on to higher orders in a. For a disturbance in the form of a single, slowly varying, non-stationary Rossby wavetrain, $\overline{F}/\overline{A}$ reduces approximately to the Rossby-wave group velocity, where (${}^{-}$) is an appropriate averaging operator. F and A have the formal appearance of Eulerian quantities, but generally involve a multivalued function the correct branch of which requires a certain amount of Lagrangian information for its determination. It is shown that, in a certain sense, the construction of conservable, quasi-Eulerian wave properties like A is unique and that the multivaluedness is inescapable in general. The connection with the concepts of pseudoenergy (quasi-energy), pseudomomentum (quasi-momentum), and ‘Eliassen-Palm wave activity’ is noted. The relationship of this and similar conservation theorems to dynamical fundamentals and to Arnol'd's nonlinear stability theorems is discussed in the light of recent advances in Hamiltonian dynamics. These show where such conservation theorems come from and how to construct them in other cases. An elementary proof of the Hamiltonian structure of two-dimensional Eulerian vortex dynamics is put on record, with explicit attention to the boundary conditions. The connection between Arnol'd's second stability theorem and the suppression of shear and self-tuning resonant instabilities by boundary constraints is discussed, and a finite-amplitude counterpart to Rayleigh's inflection-point theorem noted
Resumo:
Global communication requirements and load imbalance of some parallel data mining algorithms are the major obstacles to exploit the computational power of large-scale systems. This work investigates how non-uniform data distributions can be exploited to remove the global communication requirement and to reduce the communication cost in iterative parallel data mining algorithms. In particular, the analysis focuses on one of the most influential and popular data mining methods, the k-means algorithm for cluster analysis. The straightforward parallel formulation of the k-means algorithm requires a global reduction operation at each iteration step, which hinders its scalability. This work studies a different parallel formulation of the algorithm where the requirement of global communication can be relaxed while still providing the exact solution of the centralised k-means algorithm. The proposed approach exploits a non-uniform data distribution which can be either found in real world distributed applications or can be induced by means of multi-dimensional binary search trees. The approach can also be extended to accommodate an approximation error which allows a further reduction of the communication costs.
Resumo:
We study a brightening of the Lyman-alpha emission in the cusp which occurred in response to a short-lived southward turning of the interplanetary magnetic field (IMF) during a period of strongly enhanced solar wind plasma concentration. The cusp proton emission is detected using the SI-12 channel of the FUV imager on the IMAGE spacecraft. Analysis of the IMF observations recorded by the ACE and Wind spacecraft reveals that the assumption of a constant propagation lag from the upstream spacecraft to the Earth is not adequate for these high time-resolution studies. The variations of the southward IMF component observed by ACE and Wind allow for the calculation of the ACE-to-Earth lag as a function of time. Application of the derived propagation delays reveals that the intensity of the cusp emission varied systematically with the IMF clock angle, the relationship being particularly striking when the intensity is normalised to allow for the variation in the upstream solar wind proton concentration. The latitude of the cusp migrated equatorward while the lagged IMF pointed southward, confirming the lag calculation and indicating ongoing magnetopause reconnection. Dayside convection, as monitored by the SuperDARN network of radars, responded rapidly to the IMF changes but lagged behind the cusp proton emission response: this is shown to be as predicted by the model of flow excitation by Cowley and Lockwood (1992). We use the numerical cusp ion precipitation model of Lockwood and Davis (1996), along with modelled Lyman-_ emission efficiency and the SI-12 instrument response, to investigate the effect of the sheath field clock angle on the acceleration of ions on crossing the dayside magnetopause. This modelling reveals that the emission commences on each reconnected field line 2–2.5min after it is opened and peaks 3–5 min after it is opened. We discuss how comparison of the Lyman-alpha intensities with oxygen emissions observed simultaneously by the SI-13 channel of the FUV instrument offers an opportunity to test whether or not the clock angle dependence is consistent with the “component” or the “anti-parallel” reconnection hypothesis.
Resumo:
Advances in hardware technologies allow to capture and process data in real-time and the resulting high throughput data streams require novel data mining approaches. The research area of Data Stream Mining (DSM) is developing data mining algorithms that allow us to analyse these continuous streams of data in real-time. The creation and real-time adaption of classification models from data streams is one of the most challenging DSM tasks. Current classifiers for streaming data address this problem by using incremental learning algorithms. However, even so these algorithms are fast, they are challenged by high velocity data streams, where data instances are incoming at a fast rate. This is problematic if the applications desire that there is no or only a very little delay between changes in the patterns of the stream and absorption of these patterns by the classifier. Problems of scalability to Big Data of traditional data mining algorithms for static (non streaming) datasets have been addressed through the development of parallel classifiers. However, there is very little work on the parallelisation of data stream classification techniques. In this paper we investigate K-Nearest Neighbours (KNN) as the basis for a real-time adaptive and parallel methodology for scalable data stream classification tasks.
Resumo:
A parallel formulation for the simulation of a branch prediction algorithm is presented. This parallel formulation identifies independent tasks in the algorithm which can be executed concurrently. The parallel implementation is based on the multithreading model and two parallel programming platforms: pthreads and Cilk++. Improvement in execution performance by up to 7 times is observed for a generic 2-bit predictor in a 12-core multiprocessor system.
Resumo:
Application of optimization algorithm to PDE modeling groundwater remediation can greatly reduce remediation cost. However, groundwater remediation analysis requires a computational expensive simulation, therefore, effective parallel optimization could potentially greatly reduce computational expense. The optimization algorithm used in this research is Parallel Stochastic radial basis function. This is designed for global optimization of computationally expensive functions with multiple local optima and it does not require derivatives. In each iteration of the algorithm, an RBF is updated based on all the evaluated points in order to approximate expensive function. Then the new RBF surface is used to generate the next set of points, which will be distributed to multiple processors for evaluation. The criteria of selection of next function evaluation points are estimated function value and distance from all the points known. Algorithms created for serial computing are not necessarily efficient in parallel so Parallel Stochastic RBF is different algorithm from its serial ancestor. The application for two Groundwater Superfund Remediation sites, Umatilla Chemical Depot, and Former Blaine Naval Ammunition Depot. In the study, the formulation adopted treats pumping rates as decision variables in order to remove plume of contaminated groundwater. Groundwater flow and contamination transport is simulated with MODFLOW-MT3DMS. For both problems, computation takes a large amount of CPU time, especially for Blaine problem, which requires nearly fifty minutes for a simulation for a single set of decision variables. Thus, efficient algorithm and powerful computing resource are essential in both cases. The results are discussed in terms of parallel computing metrics i.e. speedup and efficiency. We find that with use of up to 24 parallel processors, the results of the parallel Stochastic RBF algorithm are excellent with speed up efficiencies close to or exceeding 100%.
Resumo:
The last years have presented an increase in the acceptance and adoption of the parallel processing, as much for scientific computation of high performance as for applications of general intention. This acceptance has been favored mainly for the development of environments with massive parallel processing (MPP - Massively Parallel Processing) and of the distributed computation. A common point between distributed systems and MPPs architectures is the notion of message exchange, that allows the communication between processes. An environment of message exchange consists basically of a communication library that, acting as an extension of the programming languages that allow to the elaboration of applications parallel, such as C, C++ and Fortran. In the development of applications parallel, a basic aspect is on to the analysis of performance of the same ones. Several can be the metric ones used in this analysis: time of execution, efficiency in the use of the processing elements, scalability of the application with respect to the increase in the number of processors or to the increase of the instance of the treat problem. The establishment of models or mechanisms that allow this analysis can be a task sufficiently complicated considering parameters and involved degrees of freedom in the implementation of the parallel application. An joined alternative has been the use of collection tools and visualization of performance data, that allow the user to identify to points of strangulation and sources of inefficiency in an application. For an efficient visualization one becomes necessary to identify and to collect given relative to the execution of the application, stage this called instrumentation. In this work it is presented, initially, a study of the main techniques used in the collection of the performance data, and after that a detailed analysis of the main available tools is made that can be used in architectures parallel of the type to cluster Beowulf with Linux on X86 platform being used libraries of communication based in applications MPI - Message Passing Interface, such as LAM and MPICH. This analysis is validated on applications parallel bars that deal with the problems of the training of neural nets of the type perceptrons using retro-propagation. The gotten conclusions show to the potentiality and easinesses of the analyzed tools.
Resumo:
Although cluster environments have an enormous potential processing power, real applications that take advantage of this power remain an elusive goal. This is due, in part, to the lack of understanding about the characteristics of the applications best suited for these environments. This paper focuses on Master/Slave applications for large heterogeneous clusters. It defines application, cluster and execution models to derive an analytic expression for the execution time. It defines speedup and derives speedup bounds based on the inherent parallelism of the application and the aggregated computing power of the cluster. The paper derives an analytical expression for efficiency and uses it to define scalability of the algorithm-cluster combination based on the isoefficiency metric. Furthermore, the paper establishes necessary and sufficient conditions for an algorithm-cluster combination to be scalable which are easy to verify and use in practice. Finally, it covers the impact of network contention as the number of processors grow. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
In this work, the behaviour of the system with N massive parallel rigid wires is analysed. The aim is to explore its resemblance to a system of multiple cosmic strings. Assuming that it behaves like a 'gas' of massive rigid wires, we use a thermodynamics approach to describe this system. We obtain a constraint relating the linear mass density of the massive wires, the number of the massive wires in the system and the dispersion velocity of the system. © 1996 IOP Publishing Ltd.
Resumo:
For a typical non-symmetrical system with two parallel three phase transmission lines, modal transformation is applied using some examples of single real transformation matrices. These examples are applied searching an adequate single real transformation matrix to two parallel three phase transmission line systems. The analyses are started with the eigenvector and eigenvalue studies, using Clarke's transformation or linear combinations of Clarke's elements. The Z C and parameters are analyzed for the case that presents the smallest errors between the exact eigenvalues and the single real transformation matrix application results. The single real transformation determined for this case is based on Clarke's matrix and its main characteristic is the use of a unique homopolar reference. So, the homopolar mode becomes a connector mode between the two three-phase circuits of the analyzed system. ©2005 IEEE.